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Abstract

How does spatial market segmentation affect firms’ ability to meet demand across
space? We study the market for public transportation in Johannesburg, South Africa,
where private associations of minibus owners segment the city into distinct territories.
In contrast, the demand for urban mobility is inherently interconnected, with a quarter
of commuter trips originating in one association’s territory and ending in another’s.
We study the frictions that associations face on these “between-territory” routes. Us-
ing GPS traces for over 40 million minibus trips and 9 million commuter trips, we
present two complementary empirical results that quantify these frictions. First, we
use an expected, cyclic mobility demand shock – the sharp increase in recreational
mobility following monthly pay dates – to trace out the supply curve of minibus ser-
vices by route type. The supply elasticity is close to 1 on routes contained within an
association’s territory but is significantly lower on between-territory routes (0.4). We
estimate that if between-territory supply were as elastic as “within-territory” supply,
aggregate wait time for commuters would decrease by one million minutes per day, or
approximately 4 minutes per trip. In our second exercise, we use exogenous fleet re-
ductions due to bus breakdowns and repossessions to show that associations prioritize
maintaining service on between-territory routes over within-territory routes, indicat-
ing that between-territory routes are more profitable at the margin. In a model of
minibus allocation, our observed empirical patterns correspond to more convex costs
on between-territory routes, reflecting the need for associations to coordinate with each
other on these routes.
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1 Introduction

In many developing countries, urban transportation is dominated by decentralized net-
works of privately-owned minibuses. In cities across Africa, Asia, and Latin America, these
networks account for between 30% and 80% of all mass transit in the region, filling in the
gaps left by inadequate government-provided public transportation infrastructure (Vermeiren
et al., 2015; Kumar, Zimmerman and Arroyo-Arroyo, 2021). In Johannesburg, South Africa,
38% of households use informal minibuses as their main mode of transportation, a higher
share than any other travel mode, including private vehicles.

A common feature of these contexts is the organization of minibuses into associations
that segment the city into distinct territories. These regional associations separately control
their routes and prices, restricting members’ operations to the routes under their control.
In Johannesburg, South Africa, the context of this study, the minibus industry is divided
among over twenty associations.1

Demand for urban transport, on the other hand, is not similarly fragmented. Cities
are inherently interconnected, with commuters regularly traveling between these divided
territories.2 In Johannesburg, 25% of all trips originate in one association’s territory and
end in another’s.

In this paper, we study how spatial segmentation affects the supply of public transit, and
analyze the resulting impacts on commuter mobility.3 We focus on the frictions that arise
on “between-territory” routes which connect different association territories. To operate on
between-territory routes, the relevant associations enter informal agreements about how to
split operations; for example, each association agrees to a maximum number of minibuses
they can allocate to the route. We examine whether coordination between associations
creates inefficiencies in service provision by comparing supply on between-territory routes to
supply on routes that require no inter-association coordination.

Our empirical analysis uses two rich datasets. On the supply side, we use novel data
on minibus operations from a large minibus taxi financier in South Africa. The company
provides insurance coverage for over 95% of the minibuses they finance, and they equip
each minibus with a GPS tracking device. This enables us to observe over 40 million trips

1This organizational structure exists across many contexts with minibus networks including in Uganda,
Kenya, and Ghana.

2Throughout this paper the term “commuter” is used broadly to refer to any individual traveling within
the Johannesburg Metropolitan Municipality, and is not strictly limited to those traveling for work.

3Many papers have studied the efficiency of different types of decentralized transportation networks. For
example, Chen (2024) examines the efficiency gains that occur from railroad company mergers due to reduced
interchange costs. Brancaccio et al. (2023) look at the efficiency of decentralized transportation in oceanic
shipping, and Rosaia (2020) studies network economies in ride-hailing services.
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and more than 3,000 insurance claims for 19, 214 minibuses operating in Johannesburg be-
tween October 2022 and July 2023. By comparing our sample to published operating license
applications, we estimate that our data covers 48% of all minibuses operating in Johannes-
burg (see Appendix A.4). This granular data allows us to observe the daily operations of
minibus networks at a scale and level of detail previously unavailable in the literature; we
track minibus route patterns, service frequency, and temporal changes in service delivery.
On the demand side, we construct commuter trips within Johannesburg using anonymized
smartphone GPS data from over one million unique devices over the same time period.

Our analysis proceeds in three steps. First, we present our two main empirical results
on supply response, which provide evidence of the presence of coordination frictions: i)
associations prioritize maintaining supply on between-territory routes, suggesting that these
routes are more profitable at the margin, and ii) short-term supply elasticity is lower on
between-territory routes. Second, we develop a theoretical model that rationalizes these
patterns through more convex operational costs on between-territory routes. Finally, we
quantify the impact of market segmentation on commuters by estimating the additional
wait times they face on between-territory routes.

For the first empirical exercise, we examine how associations respond to exogenous and
unexpected decreases in fleet size, focusing on how these shocks impact allocation decisions
on within- and between-territory routes.4 We use minibus breakdowns, accidents, and re-
possessions (observed in the insurance claims data) as shocks that reduce the number of
minibuses available to the association. Using a differences-in-differences design, we first
quantify the impact of these incidents on fleet size. We find that if 10% of the minibuses
in an association’s fleet have an incident (as measured by the insurance claims data), the
association’s fleet size decreases by 3% on average. This reduction in fleet size leads to differ-
ential decreases in minibus allocation across route types. The same incident shock causes an
average decrease of 1% in the number of minibuses on between-territory routes. In contrast,
on within-territory routes there is a much larger decrease of 3%; associations allocate the
shortfall more to within-territory routes. These results reveal a clear pattern: when faced
with resource constraints, associations prioritize maintaining service on between-territory
routes. This suggests that these routes are more profitable at the margin, and are under-
serviced in equilibrium. We provide evidence for this interpretation by documenting higher
per-kilometer fares on between-territory routes and ruling out alternative explanations such
as strategic market share protection or binding agreements that prevent reductions in service.

Our second empirical exercise traces out the short-term supply elasticity of minibuses
using cyclical, anticipated demand shocks. We estimate the impact of an increase in demand

4Associations allocate minibuses to specific routes, usually on a weekly schedule.
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on the supply of minibuses. To identify the supply response, we leverage variation in the
demand for mobility induced by monthly pay cycles. In South Africa, most formal workers
are paid on the 25th of the month; we show that residents take 30%-50% more recreational
or leisure trips at the end of the month when their liquidity increases after getting paid. We
use this spatial and temporal variation in mobility to construct an instrument for aggregate
mobility by interacting an indicator for whether or not the date falls within the “end of the
month” period, and whether a given route is “recreational”.

Estimating the supply elasticity presents some econometric challenges. First, both our
dependent and independent variables – the number of aggregate commuter trips and the
number of minibuses – are counts containing numerous zeros and with long right tails. A
linear model is thus inappropriate for both the first and second stage of our instrumental
variable estimation. Using a logarithmic transformation is also not feasible given the presence
of zeros in our data. Second, because we are using an instrumental variables approach, this
non-linearity in the first stage precludes the use of two-stage least squares for estimating
the causal relationship. To address these challenges, we employ two empirical methodologies
to estimate the non-linear relationship with instrumental variables. The first methodology
involves a non-parametric estimation approach outlined by Chen, Christensen and Kankanala
(2024). The second uses a generalized control function approach proposed by Wooldridge
(2014). Both methods produce similar estimates and point to a consistent pattern of results.

Minibus supply is elastic overall but responds differentially by route type. Across all
routes, a 1% increase in demand increases the number of minibus trips on a route by between
0.85% and 0.96%, depending on the methodology used. On within-territory routes, the
elasticity is close to 1, ranging from 0.93 to 0.98; when associations do not have to coordinate,
they respond nearly one-for-one to changes in demand. In contrast, between-territory routes
have a markedly lower elasticity, with estimates ranging between 0.41 and 0.56.

We present descriptive evidence showing that this reduction in flexibility is likely because
associations are less able to increase the number of minibuses on between-territory routes
compared to within-territory routes. At the end of the month, the number of minibuses
on non-recreational routes decreases, and the number of minibuses on recreational routes
within-territory increases. However, on recreational routes between-territory, the number of
minibuses does not increase significantly. This pattern suggests that associations can readily
reallocate minibuses to meet changing demand patterns within their controlled territories,
but they face restrictions in adding minibuses to between-territory routes – even when the
demand increase is anticipated.

In sum, coordination frictions result in inefficiently low and rigid supply on between-
territory routes. Associations prioritize these routes when there is a reduction in fleet size
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because they are more profitable at the margin; however, revenue-sharing agreements prevent
associations from expanding service on between-territory routes even when demand increases.

We next develop a simple model of minibus ridership and allocation to formalize the im-
plications of the two empirical patterns. In this model, associations allocate minibuses across
the routes they control in order to maximize profits. Associations face allocation/operational
costs that may vary by route type. Commuters traveling on a route decide whether to travel
using a minibus taxi or an outside option, trading off wait time – which is inversely pro-
portional to the number of minibuses allocated to the route – and the minibus fare. This
framework allows us to generate comparative statics related to our two empirical observa-
tions: i) the effect of overall fleet size on route allocation, and ii) the effect of aggregate
demand on the number of minibuses allocated. In the model, if the operational costs on
between-territory routes are more convex than on within-territory routes, we generate the
same patterns observed empirically: a larger decrease in allocation on within-territory routes
after a shock to fleet size, and lower flexibility on between-territory routes. More convex costs
means that market segmentation gives rise to inefficiencies in supply on between-territory
routes.

Finally, we quantify the costs to commuters in Johannesburg resulting from the segmen-
tation of the informal public transportation network, focusing on the impact on wait times.
We estimate by how much wait times would decline if the supply elasticity on between-
territory routes matched that on within-territory routes. To approximate wait times, we use
the time between minibus departures, i.e., the minibus headway. Assuming uniform arrival
of passengers over a given time period, the average wait time for each passenger is half of
the minibus headway.

We estimate headway elasticities using our cyclical mobility instrument, with average
minibus headway as the dependent variable. When aggregate mobility increases by 1%,
headway on within-territory routes decreases by approximately 1.2%, whereas on between-
territory routes, headway decreases by only 0.3%.

By combining the estimated headways with approximations for the total number of
minibus passengers on between-territory routes, we estimate the wait time savings that
would accrue if the headway elasticity on between-territory routes (-0.3 in the status quo)
mirrored the elasticity of -1.2 observed on within-territory routes. The results are economi-
cally significant: on recreational between-territory routes alone, passengers collectively lose
a total of 988, 142 minutes each day due to the reduced flexibility. This corresponds to ap-
proximately four minutes of extra wait time on each trip (approximately 10% of the average
trip duration). Assuming a value of time between 50% and 100% of the average hourly
wage for a minibus user, this translates to between R757, 576 and R2, 852, 437 ($46, 030 and
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$173, 313) lost each day by commuters alone.5

While association-based organization may provide benefits in terms of local coordination,
route management, and pricing, our findings show that the segmentation of these minibus
networks creates significant inefficiencies in service provision on routes that connect asso-
ciation territories. These frictions impose significant costs on commuters, increasing wait
times by an average of four minutes per trip on these between-territory routes. As in many
settings with decentralized transportation networks, there is an inherent trade-off between
market power from centralization, and the inefficiencies that arise from decentralized supply.

Related Literature

This paper contributes to four broad strands of literature: i) the (in)efficiency of decen-
tralized transportation, ii) the impacts of public transportation infrastructure, iii) optimal
transportation infrastructure, and iv) the political economy of transportation design.

First, we contribute to the literature on the efficiency of decentralized transportation
infrastructure. Brancaccio et al. (2023) study the inefficiencies that arise in decentralized
transportation networks, concentrating on oceanic shipping, Rosaia (2020) considers whether
there are network efficiency gains in ride-hailing apps, and Buchholz (2021) and Fréchette,
Lizzeri and Salz (2019) study matching frictions in the taxi industry. Chen (2024) studies the
efficiency gains from mergers of U.S. railroad freight companies. He finds that most of the
gains arise from the elimination of interchange costs between railroad companies – another
type of coordination cost arising from segmented markets. There is also a growing literature
that considers the impacts of political decentralization on transportation infrastructure. For
example, Bordeu (2023) studies how municipal fragmentation leads to over-investment in
transportation infrastructure close to municipal boundaries, and under-investment in the
core of the municipalities. A report by the OECD also highlights how decentralization to
authorities at the sub-national level can lead to efficiency losses and asymmetric outcomes
across local governments (OECD, 2019). We contribute to this literature by highlighting
a private transportation market where decentralization leads to inefficiencies in supply –
the minibus taxi network. We also empirically quantify these costs and their impacts on
consumers.

Second, many studies have examined the impacts of public transportation infrastruc-
ture on various economic outcomes (Gibbons and Machin, 2005; Glaeser, Kahn and Rappa-
port, 2008; Donaldson and Hornbeck, 2016; Baum-Snow et al., 2017; Gonzalez-Navarro and
Turner, 2018; Donaldson, 2018; Billings, 2011; Heblich, Redding and Sturm, 2020; Gendron-

5This value of time approximation is based on estimates from the literature. Recent papers suggest that
these valuations may be even larger. See section 8 for more details.

5



Carrier et al., 2022)). Despite the dominance of informal transportation in many developing
countries, most existing research on mass transit in these contexts focuses on formal pub-
lic transportation systems. Studies have examined the impacts of subways and trains (Gu
et al., 2021; Zárate, 2022) and bus rapid transit (BRT) lines (Majid, Malik and Vyborny,
2018; Gaduh, Gračner and Rothenberg, 2022; Tsivanidis, 2019) on outcomes such as con-
gestion, commute times, pollution levels, and overall welfare. The economics literature on
minibus transportation is limited. Conwell (2024) provides one of the first economic analyses
of this sector, examining how policymakers can improve upon informal public transportation
provision, given that minibuses and passengers do not internalize their spillovers on overall
wait times. By fitting an urban model of transportation demand, he finds that governments
should subsidize the operation and use of minibus taxis on specific routes to correct for these
externalities. Our paper extends this nascent literature by examining how the organizational
structure of the minibus taxi industry affects its supply and operations, and the subsequent
costs to commuters.

Third, another strand of the literature looks at the optimal design of transportation
infrastructure networks. Studies have primarily focused on transportation infrastructure in
developed economies, looking at optimal road (e.g., Fajgelbaum and Schaal (2020), Allen and
Arkolakis (2022)), and multimodal transit (Almagro et al., 2024; Wong and Fuchs, 2022) net-
works. More recently, Kreindler et al. (2023) simulate optimal bus transportation networks
in Jakarta, Indonesia, using estimated commuter preference parameters. By documenting
the costs related to the prevalent design of informal minibus networks, we contribute to the
literature on how governments should organize their public transportation infrastructure.

Fourth, our study is also relevant to the literature examining the impact of political
economy on transportation investment and design. In Johannesburg, minibuses are required
to organize into associations by government mandate. Association territories are also closely
related to historical apartheid era townships (see Appendix A.3). This aligns with studies
such as Fajgelbaum et al. (2023), who explore how political preferences shaped the placement
of train stations on the California high-speed rail, and Glaeser and Ponzetto (2018) who
show that voter perceptions of infrastructure costs can lead to over- or under-investment in
transportation projects depending on which costs are salient.

The rest of the paper is organized as follows. Section 2 describes the minibus taxi
industry in Johannesburg and a simple conceptual framework. Section 3 describes our data
and data processing. Section 4 describes the mobility patterns of minibuses and commuters.
Sections 5 and 6 describe our empirical methodology and results. Section 7 presents our
theoretical framework and model implications. Section 8 presents our findings on the impacts
of segmentation on commuter wait times, and section 9 concludes.
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2 Setting and Conceptual Framework

2.1 Informal Transportation in Johannesburg: The Minibus Taxi

In South Africa, the most prevalent form of informal mass transit is the minibus taxi.
These are privately operated 16 to 18-seater buses that serve as the primary mode of trans-
portation for households in Johannesburg, particularly for low-income commuters. The 2020
National Household Travel Survey (NHTS) shows that in Gauteng province, where Johannes-
burg is located, minibus taxis accounted for 87% of all public transportation trips.6 Moreover,
38% of households stated that the minibus taxi is their main mode of transportation (see
Figure A.1). This represents the largest share among all transportation modes in the survey,
including the use of private vehicles. Figure A.2 illustrates that low-income households rely
heavily on minibus taxis for their travel needs; as income increases, households substitute
away from the minibus taxi and walking, towards private vehicles.

Minibuses operate an unscheduled service on mostly fixed routes. They begin their route
at a minibus stop, known as a taxi rank, wait until the minibus is at capacity, and then ply
their designated route, picking up, and dropping off passengers along the route. Minibuses
queue at taxi ranks by route, and can only start to fill up with passengers after the minibuses
ahead of them have departed.7,8 Minibuses are largely uniform in size and capacity. Almost
all are 16-18-seater buses, and South African legislation prohibits minibuses from having
more than 16 seated persons while in operation. Notably, it is not the case that larger
minibuses service busier routes. This uniformity in size applies across all routes, regardless
of their popularity or passenger demand.

Minibuses are organized into associations that control entry, pricing, and routing. In
Johannesburg, associations are regional and control the routes within their geographic ter-
ritory. Figure 1 displays a map of inferred association territories within the Johannesburg
metropolitan municipality, constructed using our GPS data on minibus taxi operations.9

Each association allocates minibuses to the routes they control based on a centralized sched-
ule; in most cases, associations rotate minibuses weekly so that all owners have access to
the most profitable routes. Route prices are set and reviewed annually by the association,
and drivers cannot adjust them at will.10 In order to operate a minibus in South Africa, you

6Surveys were carried out from January 2020 to March 2020.
7Different routes and drivers assign queue positions differently, some queue on a first come first serve

basis, while others have a rotation for queue position each day.
8The vast majority of minibuses operate using this model. However, a minority of minibuses “tout” for

passengers instead. When touting, minibuses drive around and look for passengers to transport locally, as
opposed to queuing at a minibus rank.

9Details about this data are outlined in Section 3.
10For more details on the minibus taxi industry, see Appendix A.3
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must be a member of an association. This is written into the law in South Africa, but is
enforced by the associations themselves, usually through threats of violence.11

The organization of minibuses into associations is not unique to South Africa. In many
contexts where privatized minibuses make up an important share of mass-transit, these buses
organize into more centralized cooperatives. For example, in Kampala, Uganda, minibus taxi
associations control different routes, and minibus owners must register with an association
in order to operate a route (Ndibatya and Booysen, 2020). In Nairobi, Kenya, minibuses
must be a member of a Savings and Credit Cooperative (SACCO) in order to operate.
Each SACCO controls operations on a subset of routes (Kerzhner, 2022; Kelley, Lane and
Schoenholzer, 2018). In Accra, Ghana, minibus owners are members of unions which set route
prices centrally and manage the minibus terminals (Saddier and Johnson, 2018). Thus, the
dynamics outlined in this paper are not unique to our setting; the informal minibus industry
is often comprised of cooperatives that segment the market.

The geographic segmentation of Johannesburg by minibus associations means that asso-
ciations must coordinate with each other in order to service a route from one association’s
territory to another (between-territory routes); the associations must enter what they call
a “joint venture”. They agree together on the price of the route and how they will share
revenue. For example, some joint ventures stipulate a cap on the number of minibuses each
association can have servicing the route. Another common contract is to allow each asso-
ciation to pick up passengers in their own territory only. That is, they can only transport
passengers one-way and must drive back empty.

2.2 Conceptual Framework: Coordination Costs and Supply Effi-

ciency

To contextualize our analyses, we consider two theoretical extremes for “between-
territory” routes that require associations to coordinate:

1. Efficient Coordination Associations achieve efficient supply through effective coordi-
nation, despite the decentralized market structure. Associations are profit maximizing firms
that think carefully about pricing, entry, and allocation. In this world, they are also able to
coordinate without frictions and reach optimal supply on between-territory routes.

11The minibus taxi industry in Johannesburg is known to be very violent. Associations engage in “turf
wars” for control of routes, and often use violence to maintain market share. Operating a minibus taxi
without the express permission/protection of an association is ill-advised.
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2. Coordination Frictions Coordination frictions lead to inefficiencies in supply,
resulting in suboptimally rigid or low supply on between-territory routes. Here, frictions
may arise from difficulties in implementing or enforcing efficient terms, the presence of
hidden information, or the presence of transaction costs.

Our empirical exercises will help us to distinguish between these two scenarios and
quantify the magnitude of coordination costs, if present. We will use within-territory routes
as a benchmark; on these routes, inter-association cooperation is not required. We will
present a model that formalizes the intuition of our empirical exercises. Through the lens
of the model, we can interpret our empirical results as a function of the cost structures on
within- and between-territory routes.

3 Data

We use three main datasets in this paper: a census of minibus taxi routes, data on
minibus taxi operations from a large minibus financing company in South Africa, and data
on aggregate commuter flows, constructed using anonymized smartphone location data. For
most of our analyses, we use data observed between October 2022, and July 2023.

We divide Johannesburg into 1km-by-1km grids and aggregate all geographic data to this
level. A route is defined as an origin-destination pair where each origin and destination is a
distinct grid cell.

Minibus Taxi Routes Our sample of interest consists of all potential minibus taxi routes.
We define these as the permutations of origins and destinations where taxi ranks exist,
regardless of whether these routes are in operation. We use taxi ranks because they serve as
the primary infrastrucure for minibus taxi operations, effectively determining where routes
can start and end.12 This approach allows us to capture all operationally feasible routes given
the existing infrastructure. To construct this sample, we use a census of all minibus taxi
routes within Johannesburg in August 2022, collected by WhereIsMyTransport (WIMT), a
mobility technology company based in South Africa. WIMT field workers collected this data
by traveling on the minibus routes multiple times, collecting both the GPS path and the
fare charged. In total, they documented 3, 861 minibus routes in the Johannesburg area.
Figure A.3 plots a map of these routes. Using this data, we identified the universe of grids
containing minibus taxi ranks – these are the grids at the origin and destination of each

12By focusing on the existing minibus infrastructure, we do not consider any longer-term dynamics that
could involve infrastructure investments and changes to the route network.
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route. 319 grids in Johannesburg contain a minibus taxi rank, representing 17% of all grids.
Figure A.4 displays the location of these grids. This gives us 101, 442 unique minibus taxi
routes in our sample.

In our setting, some routes are completely within one association’s territory, while others
connect two associations’ territories. We refer to these as “within-territory routes” and
“between-territory routes” respectively. To classify our minibus routes into one of the two
categories, we start by first assigning each grid in the Johannesburg Municipality to an
association. For each grid, we calculate the total number of minibuses per association that
started a trip in that grid during our observation period (see the section below for details
on minibus trips). A grid is categorized as belonging to an association’s territory if the
plurality of minibuses that started a trip in that grid belong to that association. The left
panel of Figure 1 plots the association territories created through this process. We further
restrict the definition of an association’s territory to create a more conservative measure of
an association’s domain of control. We only consider a grid to be under the “control” of an
association if i) there were at least 15 unique minibuses starting a trip in the grid during our
time period, and ii) the plurality share of minibuses is greater than 22%.13 As such, we only
consider a grid to be controlled by an association if we have enough observations to make
this determination, and if the association has a large enough share of operators in the grid.
The right panel of Figure 1 plots the restricted association territories.

With each grid assigned to an association’s territory, we classify a route as being “within-
territory” or “between-territory” depending on the association of the origin and destination
grids, using our more conservative definition of territories. A route is classified as being
“between-territory” if the origin grid and destination grid are assigned to different territories.
All other routes are classified as being “within-territory”. This includes: i) routes where the
origin and destination grids belong to the same territory, ii) routes where either the origin
or destination grids do not belong to any territory, and iii) routes where both the origin
and destination grids do not belong to any territory. Using this definition, 42, 546 routes,
or 42% of routes, are classified as being between-territory routes. Columns (3) and (4) of
Table A.1 provide some statistics of within-territory routes and between-territory routes.
Within-territory routes are on average 4km shorter than between-territory routes, but there
is significant overlap in the distribution of route distances (see Figure A.5). All our empirical
exercises control for route length.

Minibus Taxi Operations Our data on minibus operation comes from a large minibus
financing company. The company provides asset-backed loans for the purchase and operation

13These cut-off points represent the 25th percentile of both distributions.
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of minibus taxis in South Africa. As part of their risk management, they outfit each minibus
they finance with a GPS tracker. The company also provides insurance to 95% of the vehicles
they finance. We have access to pre-processed trip data and insurance claims data for 19, 214
vehicles in operation in Johannesburg between October 2022 and July 2023. We also have
data on the association to which the minibus belongs.

Our data partner first processes the raw GPS data into “trips” before sharing this data
with us. Each trip has a start and stop latitude and longitude, time stamps, and total
distance traveled. They provide data on 40, 124, 891 trips within Johannesburg.14 The
endpoints of the pre-processed data corresponds roughly to locations where i) the minibus
has regularly been observed to stop for more than five minutes over the full dataset of GPS
readings, and ii) the minibus’s calculated average speed was less than 5km/h as they passed
through the location.15 There are several start and stop locations in this pre-processed data
that do not correspond to a minibus taxi rank grid. This can happen for several reasons: for
example, at gas stations or busy intersections. We thus process this data to generate trips
on our routes of interest by aggregating up to our minibus taxi route level. We define “stop
points” for each minibus taxi which correspond to the start or stop location of a minibus as
classified by our data partner. We classify a minibus taxi as taking a trip on a minibus route
o-d if:

1. A stop point for the minibus intersects with a rank grid, o, and
2. Rank grid d is the first minibus rank grid with which a subsequent stop point intersects,

within a 6-hour time span.
Note that we do not allow o = d. This algorithm throws out any intermediary “stops” the
minibus taxi made, as defined by our data partner, if it does not intersect with a minibus
rank grid in our data. After this procedure, we have 7, 124, 646 trips on 31, 433 minibus
routes. Column 2 of Table 1 and column 1 of Table A.2 provide statistics on the minibus
route trips. Our final dataset includes zeros for all route-day pairs with no minibus trips.
As such, we have 30,838,368 observations corresponding to 101,442 minibus routes over 304
days of observation (October 2022 to July 2023).

We use insurance claims data to identify incidents that may affect a minibus’s ability to
operate. There are 3, 475 incidents that take place during our study period, impacting 14%

of the minibuses in our sample. The data includes the date of the incident and the claim
cost for each incident. 66% of incidents have accompanying claim descriptions. We use these
descriptions to classify incidents into different types: 33% of all incidents are described as

14We define a trip as being within Johannesburg if both the origin and destination grids are within the
border of the Johannesburg Metropolitan Municipality

15For more information about the specific company algorithm, see appendix A.5
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repossessions, and 23% are classified as accidents.16 We further define a separate category –
“severe accidents” – which corresponds to accidents with claim costs exceeding the median
claim cost for all accidents. Severe accidents make up 12% of our claims data.

Our minibus data is broadly representative of the minibus taxi industry as a whole. In
South Africa, all applications for minibus taxi operating licenses are gazetted. We digitize
these published applications and find that our data set contains 95.2% of all associations
that applied for an operating license between March 2017 and March 2020.17 Figure A.17
shows that our data is also broadly representative of association shares in the industry. See
Appendix A.4 for more details.

Aggregate Commuter Flows To study overall mobility patterns in Johannesburg, we
purchased anonymized smartphone GPS data from a mobility technology company. This
data contains a selection of smartphone GPS pings from devices in operation within South
Africa between October 2022 and July 2023. In total, we have 373, 715, 157 smartphone
pings from 1, 087, 889 unique devices in Johannesburg during this time period. See column
(1) of Table 2 for other statistics from this raw data.

We translated these smartphone pings into trips using a modification of the algorithm
developed by Kreindler (2023). The algorithm combines sequential GPS pings within a
distance and duration threshold into “stays” or “trips”. After running the algorithm, we
have approximately 9, 049, 991 trips within Johannesburg from 516, 558 unique devices (see
column (2) of Table 2). We also restrict our data to subset of trips that are on minibus taxi
routes – these are trips whose origin and destination intersect with a minibus rank grid with
o ̸= d. There are 510, 918 trips on 33, 198 minibus taxi routes. Column (3) of Table 2 and
column (2) of Table A.2 provide statistics on aggregate commuter trips on minibus routes.

In general, higher income quartiles of the population are over-represented in the smart-
phone data (see Figure A.19). As a robustness check, we re-weigh our trip data using the
2010 South Africa census as outlined in appendix A.6 to create a more representative sample
of aggregate trip flows within Johannesburg. We then re-run our main analyses using this
representative sample. The pattern of results is similar but the estimates are more noisy.

16Accident descriptions include: “multiple vehicles”, “single collision”, “collision with animal”, “collision
with building”, “collision with object”, and “collision with pedestrians”. The remaining 10% of incidents are
not classified as either repossessions or accidents, for example, “Fire” and “Hail damage”

17Gazettes were no longer published during the COVID pandemic.
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4 Mobility Patterns and Minibus Services in Johannes-

burg

4.1 Minibus Taxi Prices

Associations set the prices of routes centrally and do not change them in the short-term.
Instead, prices are reviewed annually and the association decides whether to increase fares
or leave them as is. Fares are more expensive on between-territory routes than on within-
territory routes after controlling for route length (Table A.3). This suggests that associations
pass through some of the costs of operating on these routes to commuters.

Minibus taxi routes are also more expensive on average than government-provided BRT
buslines. Figure A.6 plots the average price of both binned by total route distance.
Government-provided buses are subsidized but service far fewer locations than minibus
taxis.18

The average minibus taxi fare is between 8% and 16% of the average user’s hourly wage.
Transportation costs in South Africa are high relative to household incomes. Direct trans-
portation costs are approximately 17% of average wages, and this share increases to 37% for
households in the lowest income quintile (Shah and Sturzenegger, 2022).

4.2 Where do Minibuses Operate?

Minibus operations are concentrated within their association’s regional territory and
between these territories and the Central Business District (CBD).19 Figure 2 illustrates
this pattern of operation for a selection of associations within Johannesburg. Each dot on
the map represents the starting point of a minibus taxi trip in March 2023, color-coded by
association.20 Panels (B), (C), and (D) highlight the operations of three different associations
individually. The pattern is stark – minibuses mostly operate within a confined region (their
association territory), and in the CBD.

Regression analysis at the day-route level confirms this pattern. We classify routes as
either within-territory or between-territory and use Pseudo-Poisson Maximum Likelihood
(PPML) to estimate:

18Government provided buses and trains are the main mode of transportation for only 2.31% and 2.35% of
households, respectively. The modal reason households gave for not using these transportation modes more
often was their lack of availability (see Figure A.7).

19The CBD region is not controlled by any one minibus association. Most associations have at least one
route from their territory into the CBD (and back).

20This map is generated using data described in Section 3.
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minibus_tripsrt = exp (νo + ηd + γt + route_lengthr + within_terrr + ϵrt) (1)

Where minibus_tripsrt is the number of minibus trips on route r and day t. νo are origin
fixed effects, ηd are destination fixed effects, and γt are day fixed effects. route_lengthr is
the length of route r (i.e., the distance between o and d).

Column (2) of Table A.4 displays the results. A 1km increase in distance reduces trips by
15%. This decay over distance is the same order of magnitude when we compare it to aggre-
gate commuter trips (column (3) of Table A.4); a 1km increase in distance reduces commuter
trip by 22%. However, there are 1.22 log-points more trips on within-territory routes than
on between-territory trips – this is approximately 238% more trips within- than between-
territory. The difference is an order of magnitude higher than for aggregate commuter trips
(all modes of travel); commuter trips are 18% higher within-territory than between-territory.

Though minibus trips are concentrated within their association’s territory, each minibus
still operates on several different routes over the course of month, exemplifying the inherent
flexibility of the sector. The median minibus in our data operates on an average of 4.62

unique routes each month, and has operated on 13 unique routes over our 10-month study
time period. The same minibus can operate on both within- and between-territory routes.
For the average minibus, 15% of all trips are on between-territory routes.

4.3 Short-term Shocks to Supply and Demand

Short-term shocks are common in the minibus industry, occurring on both the supply and
demand sides. We take advantage of both kinds of shocks to study associations’ response.

Shocks to Minibus Fleets The number of minibuses available to operate fluctuates daily.
While associations allocate minibuses to routes, the decision to operate and the frequency
of operation are up to the minibus owner and driver. Various factors affect association fleet
size: drivers may be sick or on vacation, or choose not to work; minibuses may breakdown,
get in an accident, be repossessed, or be undergoing maintenance. Our data shows that on
a typical workday, an average of 2,429 minibuses are operating in Johannesburg, and the
variance is 410 – 18% of the mean.

We use exogenous shocks in fleet size from bus breakdowns, accidents, and repossessions
to study how associations allocate these fleet reductions in section 5.

Cyclical Mobility Mobility in South Africa is highly cyclical. Residents take more trips at
the end of the month after they have been paid – this is especially true for recreational/leisure
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trips. Most formal jobs in South Africa pay their employees on the 25th of the month. This
liquidity infusion leads to higher aggregate demand for trips to (and from) retail, recreation
and grocery locations. We can see this pattern distinctly using Google Mobility data for
Johannesburg. Google published the percent change in mobility in 2022 compared to a
baseline day in 2020, broken down by category of visit.21 Figure 3 plots this percent change
by day of the month after taking out day of the week fixed effects. That is, the coefficient
on the 25th, for example, is the average percentage point difference in mobility between the
25th of the month and the 15th (the reference day), holding the day of the week constant.
Retail, recreation, grocery, and pharmacy trips spike sharply on the 25th of each month, and
then decrease slowly as residents spend down their salary. On average, the number of retail
and recreational trips increases by 32% from the 24th to the 25th of the month, and by 51%
for grocery and pharmacy trips. As we might expect, there is no such trend for trips to the
workplace; commuters travel to work every day regardless of their liquidity.

We use this cyclical trend to construct an instrument to identify the minibus response to
fluctuations in demand. The instrument and the assumptions needed for identification are
described in detail in Section 6.1.1.

5 The Impact of a Shock to Fleet Size on Route Alloca-

tion

Our first set of results examines how associations respond to an exogenous decrease in fleet
size. We use minibus breakdowns, accidents and repossessions, identified in the insurance
claims data, as quasi-exogenous shocks that reduce the number of minibuses an association
can allocate to routes. We analyze how these shocks impact the association’s choices in
allocating their remaining buses between between-territory and within-territory routes.

Our preferred specification uses all categories of incidents as a shock to vehicle operation,
as this provides the most statistical power. We also present results using repossessions,
accidents, and severe accidents as separate shock categories.

5.1 “Zeroth Stage” Impacts of Incidents on Minibus Operation

We first study whether an insurance claim incident causes the probability of minibus
operation to go down. To study this, we estimate the following equation:

21The baseline day’s mobility is the median value from the 5-week period between Jan 3 and Feb 6, 2020
for the same day of the week. See https://www.google.com/covid19/mobility/ for more details
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operatingvt = ϕv + γt + βpostvt + L>10,vt + L<−10,vt + ϵvt (2)

Where operatingvt is an indicator for whether a minibus v is operating in week t, ϕv are
minibus fixed effects, and γt are week fixed effects. Our variable of interest, postvt, is an
indicator for whether vehicle v had an incident in the previous 10 weeks before t. We also
control for L>10,vt and L<−10,vt which are indicators for whether vehicle v had an incident 10
weeks after week t and ten weeks before week t respectively. β captures the average effect of
having an insurance incident in the 10 weeks after the incident relative to 10 weeks before
the incident.

The impacts of insurance claims on minibus operation are shown in panel A of Table 3
for the different type of insurance claims. Having any type of insurance claim decreases the
probability of operation in the next 10 weeks by 12 percentage points. Repossession leads
to a decrease by 26 percentage points, and severe accidents decrease the probability by 18
percentage points.

Figure A.8 plots results from the event-study version of equation (2) for different types
of incidents. For incidents in general, we observe no pre-trends in the probability of oper-
ation, and there is sharp drop the week after an incident, persisting up to 10 weeks later.
Accidents and severe accidents show a similar pattern, except that the operation probability
steadily increases over time, as minibuses undergo repairs. Repossessions, however, show
some evidence of pre-trends; minibuses that are repossessed are more likely to be operating
approximately two months before the repossession. This pattern suggests that minibus op-
erators are likely aware of impending repossessions and may increase their operation in an
attempt to avoid losing their vehicle.

Minibuses that file an insurance claim are similar to those that do not on observable
characteristics. In particular, they are not more or less likely to operate on within-territory
routes (see Table A.5). Minibuses that are repossessed operate more on between-territory
routes, belong to larger associations, and operate on fewer routes in total. Adding controls
for these characteristics does not materially change our results (see Table A.6).

Minibuses do not operate on the same routes from week to week – they rotate between
multiple routes based on a central schedule made by the association. To demonstrate this
rotation in the data, we plot the proportion of a minibus’s trips that are within territory
against the proportion of trips that are within-territory in the subsequent week, residualized
by the association size. Figure A.15 shows the results. The two are largely uncorrelated.
Consequently, when a minibus becomes inoperable, its impact is felt at the association level
as the entire fleet must be reallocated, rather than affecting a single fixed route. Changes in
the supply of minibuses on any given route therefore reflect deliberate allocation decisions
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by associations rather than mechanical effects from specific minibuses going offline.

5.2 “First Stage” Impacts of Incidents on Association Fleet Size

We next turn to examining whether the decrease in vehicle operation after an incident
translates to a reduction in their association’s fleet size. This may not happen if, for example,
associations have a backlog of wait-listed operators who are ready to begin operating if a
minibus goes offline.

To look at this first-stage impact, we estimate a similar equation to (2) above:

No. Minibusesat = exp
(
ϕa + γt + βp̃ostat + L>10,at + L<−10,at + ϵat

)
(3)

Our data is at the association week level. No. Minibusesat is the number of operating
minibuses in association a’s fleet in week t. ϕa and γt are association and week fixed effects
respectively. p̃ostat is the total number of incidents that occurred to association a’s minibuses
in the 10 weeks before week t; we adjust this count by dividing it by association a’s fleet size
over our full study period. L>10,at and L<−10,at are the adjusted number of incidents that
occurred more than 10 weeks before and less than 10 weeks after week t respectively.

We estimate (3) using Pseudo-Poisson Maximum Likelihood (PPML). Using PPML to-
gether with the adjusted treatment variables allows us to account for non-linearities that
occur due to the varying association fleet sizes in our data.22 Thus, β ∗ 100 is the average
percent decrease in the number of an association’s minibuses in operation in the 10 weeks
following an incident – relative to 10 weeks before – if all the minibuses in the association’s
fleet have an incident.

Panel B of Table 3 show the results. An association-wide incident leads to a decrease in
fleet size of 32% on average over the next ten weeks. Repossessions lead to a decrease in fleet
size of 70%,23 and severe accidents lead to a 51% decrease. Figure 4 plots the event-study
version of the regression.24

5.3 Impacts of Fleet Size on Route Allocation

Finally, we look at how the number of minibuses an association has in it’s fleet affects its
allocation to within- and between-territory routes. To do this, we instrument for fleet size

22We have 697 associations that have at least one trip in Johannesburg during our time period. The
average association size is 20.7 minibuses and the standard deviation is 4.47

23Note here that repossessions do not have a similar pre-trend problem as in the zeroth-stage regression
as they are not endogenous to association fleet size in the same way as minibus operation.

24Effects are less than 100% because an incident does not lead to a minibus going offline 100% of the time
(see Section 5.1)
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using insurance incidents.
The reduced form effects of incidents on the number of minibuses on within- and between-

territory routes are estimated using the below stacked equation:

No. Minibusesatr = exp(ϕa + γt + L>10,at + L<−10,at + βwp̃ostat × within_terrr
+ βap̃ostat × between_terrr + ϵat) (4)

Where our data is at the association/week/route type (within vs. between) level.
No. Minibusesatr is the number of minibuses in operation for association a, in week t, on route
type r, within_terrr is an indicator for route type r being within territory, and between_terrr
is an indicator for route type r being between territory. All other variables are defined the
same as in equation (3). Coefficients are estimated using PPML.

Panel C of Table 3 show the results. On average, an association-wide incident leads
to a decrease in the number of minibuses operating on within-territory routes of 32%. The
corresponding decrease on between-territory routes is 11% and the difference between within
and between-territory allocation is statistically significant. The pattern carries through for
all incident types – associations decrease the number of minibuses within territory more than
they do between territory. Figure 5 displays the event study versions of these regressions.

We now turn to the instrumental variable specification. Our structural equation is given
by:

No. Minibusesatr = exp(ϕa + γt + L>10,at + L<−10,at + αlog(fleet_size)at
+ βwwithin_terrr × log(fleet_size)at + ϵatr) (5)

Where we instrument for fleet size using the number of incidents for association a that
occurred in the last 10 weeks before week t, divided by the total size of the association. We
add the controls for L<−10 and L>10 to continue to control for incidents that occurred more
than 10 weeks before and after week t.25 We estimate the equation using PPML-IV that
allows for the inclusion of fixed effects, following Lin and Wooldridge (2019).26

Table 4 presents the results of this estimation, using different incident types as instru-
ments. Using all incident types as an instrument, when fleet size decreases by 1%, the
number of minibuses allocated to between-territory routes decreases by 1.4% and the num-

25This is needed in the first-stage regression in order to retain the interpretation as the effect in the 10
weeks after the incident relative to the value 10 weeks before the incident.

26The procedure involves estimating first-stage (with FEs) using OLS, obtaining residuals, and then in-
serting the residuals into the second stage and estimating via PPML.
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ber of minibuses allocated to within-territory routes decreases by 2.1%. This difference
(0.7%) is statistically significant.

5.4 Why do Associations Maintain Supply between-territory?

When an association faces a shock to its fleet size, it prioritizes maintaining supply
on between-territory routes while decreasing supply on within-territory routes. We consider
three potential explanations for this behavior: i) between-territory routes are more profitable
at the margin, ii) associations do not want to reduce service between territory out of fear
that the partner association will eat up their market share and push them out of operation,
and iii) associations cannot reduce service because the joint-venture agreements are binding.
While all three scenarios are consistent with the presence of coordination frictions impacting
supply, we present evidence showing that higher marginal profitability is the most likely
explanation in this context.

First, descriptive evidence supports the profitability mechanism: between-territory routes
have higher fare prices on average, even after controlling for route length and distance from
the Central Business District (see Table A.3).

Second, we examine whether associations’ behavior reflects concerns about maintaining
market share on between-territory routes. If associations do not reduce service out of fear
that their partner would seize market share, we would expect to see lower variation in
the total number of minibuses on a route compared to the variation in each association’s
individual contribution. Our data shows the opposite pattern: the distribution of standard
deviations has a lower mean for individual associations than for the combined total (see
Figure A.14). Additionally, when we regress one association’s minibus allocation on its
partner’s allocation on between-territory routes, we find a coefficient of -0.4 (Table A.7). This
is far from the coefficient of -1 we would expect if associations were perfectly cannibalizing
each other’s market share, suggesting that while some competitive response exists, it is not
the primary driver of behavior.

Third, we investigate whether joint-venture agreements constrain associations’ ability to
reduce supply between-territory. Evidence from Section 6.3 shows that associations can and
do remove minibuses from between-territory routes when demand is low; specifically they do
so at the end of the month when demand on non-recreational routes decreases. This flexibility
in reducing service suggests that joint-venture agreements do not impose binding downward
constraints on supply. This ability to reduce service is logical - associations are likely more
concerned about their partners expanding service and capturing additional revenue than
about temporary service reductions.
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Given these results, we conclude that the most likely mechanism is that between-territory
routes are more profitable at the margin. This implies that they are also under-serviced in
equilibrium.

6 The Impact of Aggregate Mobility on Minibus Supply

We estimate the supply response to short-term shifts in aggregate mobility and document
how this elasticity differs by route type. We present results for two distinct econometric
strategies and summarize the results of both methods in section 6.2. We also present de-
scriptive patterns detailing the likely mechanism for the difference in flexibility on within-
and between-territory routes.

6.1 Estimation Framework

To measure the average minibus supply elasticity, our ideal specification is:

log(supplyrt) = ϕr + γt + βlog(aggregate_tripsrt) + ϵrt (6)

where aggregate_tripsrt is the number of aggregate commuter trips on route r on day t. ϕr

are route fixed effects, and γt are day fixed effects. The fixed effects absorb any differences
across routes and any time-varying shocks across all routes. We consider two related measures
of minibus supply, supplyrt. The first is the number of minibus taxis on the route – the
extensive margin response. The second is the number of minibus taxi trips taken on the
route – the intensive margin response. β is our measure of the elasticity. There are two
reasons why we cannot estimate the model in equation (6) as-is in our setting. First, β is
an equilibrium parameter and thus, in this model, it does not measure the causal impact of
increasing aggregate demand on minibus supply. Second, both aggregate_tripsr and supplyr

are counts which include 0. This means we cannot take logs of the variables in order to easily
estimate an elasticity. Further, a linear model is likely to fit the data poorly given that our
counts have a long right-tail (see Figure A.9 for the distribution of aggregate_tripsr and
supplyr).

To deal with the first issue of endogeneity, we construct an instrumental variable which
shifts the aggregate number of trips on a route. Our instrument uses the fact that mobility
increases at the end of the month, when most residents of South Africa get paid. The use of
an instrumental variable for identification further complicates our ability to carefully model
the non-linear relationship between the two counts. Ideally, the first-stage of our estimation
– the impact of the instrument on the aggregate number of trips – is non-linear. However,
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with a non-linear first-stage, two-stage least squares is no longer appropriate. We use two
methods to estimate this non-linear relationship with instrumental variables. Both methods
rely on slightly different assumptions, but result in similar estimates. The first estimates the
relationship non-parametrically.27 The second uses a generalized control function approach,
sometimes called two-stage regression inclusion, proposed by Wooldridge (2014).

Section 6.1.1 details the construction of our instrument and the assumptions needed for
identification. Section 6.1.2 presents our non-parametric estimation in detail, as well as the
results from this strategy, and section 6.1.3 details the generalized control function approach,
and presents the results. Section 6.2 summarizes the results from the two methodologies.

6.1.1 Instrumental Variable: Cyclical Mobility

We use variation in demand for mobility induced by monthly pay cycles to construct an
instrument to estimate minibus flexibility. As described in section 4.3, mobility is highly
cyclical in Johannesburg. Residents take more discretionary trips at the end of the month
after they have been paid.

Based on these patterns, we posit that on recreational routes, at the end of the month,
the aggregate number of trips increases exogenously and we can use this as an instrument
to estimate the supply elasticity. We construct our instrument by first classifying routes in
our sample as recreational and then defining high “demand days” at the end of the month.
We classify a route as recreational if there is a large mall at either the origin or destination
grid of the route. We use the Google Place of Interest (POI) database to identify all the
malls within Johannesburg, and to extract the number of Google reviews each mall has. The
number of reviews serves as a proxy for the size and popularity of the mall. We classify a
mall as large if it is in the 75th percentile of the number of reviews. In our sample, this
translates to having 2, 959 or more Google reviews.28 Our aim is to isolate large malls that
draw large numbers of visitors such that a trip originating or ending within the 1km grid has
a high probability of being recreational. With this definition – having a large mall in either
the origin or destination – we classify 26, 640 routes (26% of all routes) as recreational. Table
A.1 displays the summary statistics of these routes as compared to other categories of routes
in the data. In general, recreational routes do not look different on average from all routes.
Figure A.11 displays the spatial distribution of grids with large malls within Johannesburg.
Large malls are not concentrated in any one part of Johannesburg, though there are few
large malls in minibus taxi grids in the outskirts of the municipality, especially in the South.

27Non-parametric instrumental variable models have been widely studied, and we closely follow the ap-
proach outlined in Chen, Christensen and Kankanala (2024).

28Figure A.10 plots the distribution of the total number of mall reviews for each grid.
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We first examine whether our aggregate mobility data replicates the cyclical mobility
patterns observed in the Google mobility data. To do so we estimate the below model:

aggregate_tripsrt = exp

(
ϕr +

31∑
d=1,d ̸=24

βd1{dayt = d}+ Xt + ϵrt

)
(7)

where aggregate_tripsrt is the total number of trips on route r and day t, and ϕr are route
fixed effects. Xt include day of week, month, and holiday fixed effects. The top panel of
Figure 6 plots the estimates of βd for each day of the month (estimated using Pseudo-Poisson
Maximum Likelihood). Mobility is indeed cyclical – the number of trips on a route are lower
in the middle of the month, and there is a discrete jump on the 25th, when most workers
in South Africa get paid. These results are averaged over all types of routes in our dataset.
Next, we examine the added effect on recreational routes by estimating the below model:

aggregate_tripsrt = exp

(
ϕr + γt +

31∑
d=1,d ̸=24

αd1{dayt = d} × has_mallr + ϵrt

)
(8)

where γt are day fixed effects, and has_mallr is an indicator for whether the route has a
large mall at the origin or destination, i.e., whether the route is recreational. The bottom
panel of Figure 6 plots the estimates of αd for each day of the month. There is an added
mobility effect at the end of the month on recreational routes from the 25th of the month,
until the 10th of the subsequent month.

Given these patterns, our main instrument is the interaction of whether or not a route
is recreational with whether or not it is a high demand day:- demand_dayrt × has_mallr.
We define a high demand day to be from the 25th of the month to the 10th of the next
month. Table 5 shows the first stage impact of the instrument on aggregate mobility for
both the linear specification using OLS, and the non-linear version which uses PPML. On
recreational routes on demand days, the number of aggregate commuter trips increases by
0.001 trips, or by 4.1%. Our assumption for identification is that this instrument does not
affect the supply of minibus taxis except through its impact on the aggregate number of
trips. In this setting, most minibus taxi drivers have daily or weekly rental contracts, and
thus do not also experience a discrete jump in liquidity at the end of the month. It could be
the case, however, that drivers’ total household income increases at the end of the month, if,
for example, their spouse gets paid on the 25th. Such a scenario would lead to a downward
bias in our estimate of elasticity – drivers would want to work less at the end of the month.
In our setting, almost all minibus taxi drivers are male, and in South Africa, men tend to be
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the main household breadwinners. As such, we believe that the assumption of exogeneity is
plausible and we can use this instrument to identify the supply elasticity of minibus taxis.

Before proceeding to our formal econometric analysis, we present reduced-form estimates
of our instrument’s effects using PPML. While we cannot directly take the ratio of these
coefficients to estimate elasticities due to the non-linear model, they provide transparent and
intuitive preliminary evidence. The results in Table 6 show that on within-territory routes,
the instrument increases supply by 3.3%, comparable to the 3% increase of commuter trips
on these routes. In contrast, on between-territory routes, there is smaller supply response
(2%) relative to the increase in commuter trips (7%). Taken together, these patterns suggest
that the supply elasticity is much lower between-territory. These patterns persist when we
control for route length, as shown in Table A.8. We now turn to more rigorous estimation
approaches to precisely quantify these supply elasticities.

6.1.2 Method 1: Non-Parametric Instrumental Variables (NPIV)

To estimate the supply elasticity non-parametrically, we use a B-spline nonparametric
instrumental variable estimator (see Chen and Qiu (2016); Chen, Christensen and Kankanala
(2024)). In this setting, the identifying assumption is given by:

E [Y − h0(X)|Z] = 0 (9)

where h0 is some function of X, our endogenous variable. We can approximate h0 using a
linear combination of J cubic B-spline basis functions which have a vector of coefficients cJ .
Our instrument can similarly be approximated using K cubic B-spline basis functions of Z,
where K > J . Then we can estimate cJ using two-stage least squares or Generalized Method
of Moments (GMM).

As proposed by Chen, Christensen and Kankanala (2024) (henceforth CCK), we use a
data-driven approach to choose J , the number of B-spline basis functions used to estimate
h0(X) (and consequently K, the number of basis functions for our instrument). This ap-
proach ensures that estimates of h0(X) and its derivatives converge at the best possible
rate.

Our structural equation is given by:

supplyrt = h0(aggregate_tripsrt) + ϕr + γt + ϵrt (10)

The key assumption for identification is that our instrument, route, and day fixed effects
are exogenous. For this non-parametric estimation, we use a continuous version of our
instrument to ensure that we are able to non-parametrically fit K B-spline basis functions of
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Z. This instrument is an extension of our binary instrument – demand_dayrt × has_mallr.
Instead of the binary indicator has_mallr, which is 1 if there is a large mall at either the
origin or destination of route r, we use mall_ratings which is the maximum number of mall
ratings at the origin and destination of the route. mall_ratings is zero if there is no large
mall at either the origin or destination.

The CCK approach to estimating data-driven number of splines does not extend to
estimating linear fixed effects. Thus, as outlined in the paper, we also make the addi-
tional assumption that aggregate_tripsrt is conditional mean independent of route and
day fixed effects given our instrument. That is: E [h0(aggregate_tripsrt)|zrt, ϕr, γt] =

E [h0(aggregate_tripsrt)|zrt]. With this assumption, our reduced form can be written as:

supplyrt = g(zrt) + ϕr + γt + ert (11)

where g(zrt) = E [h0(aggregate_tripsrt)|zrt] and E [ert|zrt, ϕr, γr] = 0. We can then eliminate
the fixed effects in a first stage by regressing supplyrt on route and day fixed effects and
B-splines of zrt. We then apply the data-driven approach using Yrt = supplyrt − ϕ̂r − γ̂t as
the dependent variable.29

Heterogeneity by Route Type We use the same procedure to estimate h0(X) separately
for within-territory routes and between-territory routes. For this heterogeneity analysis, we
also control for the interaction between the aggregate total number of trips, and the length
of the route. This ensures that differences in elasticities between the two route types are not
driven by differences in travel behavior based on the route length.

Here, our structural equation is given by:

supplyrt = h0(aggregate_tripsrt)+ l0(aggregate_tripsrt×route_lengthr)+ϕr+γt+ϵrt (12)

which we run separately for within-territory routes and between-territory routes. Our
instruments are: demand_day × mall_ratingsrt and demand_day × mall_ratingsrt ×
route_lengthr. We again eliminate the fixed effects in a first stage and then use the data-
driven approach with the residualized dependent variable.

Results

Using this procedure, our data-driven choice of B-spline segments is 5. Figure A.12 plots
our estimate of h0(aggregate_tripsrt) over the full range of x values in our data. We focus

29See Chen, Christensen and Kankanala (2024) for implementation details.
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our inference over the range x ≤ 4 as this is where the mass of our data lies.30 Figure 7 plots
h0(aggregate_tripsrt) and the implied elasticity for aggregate_tripsrt ≤ 4. We calculate the
elasticity using the non-parametric estimates for h0(x) and h′

0(x).31 The median elasticity of
minibus trips is 0.85, and the median elasticity of the number of minibus taxis is 0.90. That
is, on average, when the number of aggregate commuter trips on a route increase by 1%, the
number of minibus trips on that route increases by 0.85%, and the number of minibus taxis
increases by 0.90%. We calculate standard errors via bootstrapping and cluster at the origin
level.

Within- vs between-territory Route Elasticities The left panel of Figure 8 plots our
estimated h0(x) for within-territory routes and between-territory routes evaluated at the
average route length in our data (21.58km). The right panel plots the associated elastici-
ties. The median elasticity of minibus trips is 0.94 for within-territory routes, and 0.55 for
between-territory routes. The median elasticity of the number of minibus taxis is 0.98 for
within-territory routes, and 0.55 for between-territory routes.

6.1.3 Method 2: Generalized Control Function (GCF)

Our second approach to estimating the supply elasticity follows from Terza (2009) and
Wooldridge (2014). They propose a control function procedure with two steps. First, esti-
mate a parametric model for E [x|z, w] with parameters θ, and define a control function ê(θ)

which includes the standardized residual of the model. Second, estimate a parametric model
for E [y|x,w, e], inserting ê for e. The key assumption in this setting is that controlling for
the residual of the first stage solves the endogeneity problem. In the case of a linear model,
this assumption follows directly from the assumption of exogeneity of the instrument. How-
ever, if the model in the first step is non-linear, as it is in our case, the assumption that the
control function takes care of all endogeneity does not necessarily hold.32

For our setting, we model E [x|w, z] as following a Poisson distribution:

E [aggregate_tripsrt|zrt, ϕr, γt] = exp(πzrt + ϕr + γt) (13)

Where zrt is our binary instrument:- demand_dayt × has_mallr. Define ĝrt ≡ exp(π̂zrt +

ϕ̂r+ γ̂t), then our generalized error is aggregate_tripsrt− ĝrt. We standardize the error using√
V ar(aggregate_tripsrt|zrt, ϕr, γt). Because we are assuming our model follows a Poisson

distribution, Var(aggregate_tripsrt|zrt, ϕr, γt) = E [aggregate_tripsrt|zrt, ϕr, γt]. Thus our
30See figure A.13 for the distribution of aggregate demand counts.
31The elasticity is given by h′

0(x) · (x/h0(x))
32See Wooldridge (2014) for details.
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standardized residual is:
êrt =

aggregate_tripsrt − ĝrt√
ĝrt

To get our causal estimate of the elasticity under this procedure, we estimate
E [supplyrt|aggregate_tripsrt, ϕr, γt, ert] using a Poisson model and inserting our standardized
residual from the first stage for ert.

The presence of fixed effects again presents some challenges in the implementation of
this method. We estimate the first stage and second stage using Pseudo-Poisson Maximum
Likelihood (PPML). PPML drops observations for fixed effects with no variation, e.g., routes
that have only zero trips for our full observation period. As such, we can only generate
residuals for routes that are not dropped during the first stage.33 To avoid dropping a large
number of observations, we instead estimate our model using origin and destination fixed
effects in lieu of route fixed effects. Route fixed effects add little information over and above
origin and destination fixed effects. Table 5 provides evidence of this. Estimates of our
first-stage effects are identical with (column 3) and without (column 4) route fixed effects.
Tables A.9 shows the same comparison for the reduced form regressions. Given that the
estimates are identical for both specifications, we are confident that the omission of route
fixed effects does not bias our results. Our new first-stage model is:

E [aggregate_tripsrt|zrt, νo, ηd, γt, w] = exp(πzrt + αhas_mallr + νo + ηd + γt) (14)

Recall that zrt = demand_dayt × has_mallr and so we must add back has_mallr to the
model if we do not include route fixed effects. With this specification, our second stage
model is:

E [supplyrt|aggregate_tripsrt, νo, ηd, γt, ert] = exp(β1aggregate_tripsrt+β2has_mallr+νo+ηd+γt+êrt)

(15)
Where êrt is the standardized residual from the first stage, and β1 is our estimate of the

elasticity. We calculate the standard errors via bootstrapping, standard errors are clustered
at the route level.

Heterogeneity by Route Type We use the above procedure separately for within-
territory routes and between-territory routes.

For the heterogeneity results, we also run a version in which we control for route length.
We instrument for both aggregate_tripsrt and aggregate_tripsrt × route_lengthr. We de-

33This is an issue only for route fixed effects as each day has variation in the number aggregate commuter
trips.
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mean route length so that estimates are interpreted at the average route length. Our first
stages are modeled as:

E [aggregate_tripsrt|z1rt, z2rt, νo, ηd, γt, w] = exp(π1z1rt + π2z2rt + αhas_mallr+

route_length+

demand_day × route_length+

νo + ηd + γt) (16)

E [aggregate_tripsrt × route_length|z1rt, z2rt, νo, ηd, γt, w] = exp(π1z1rt + π2z2rt + αhas_mallr+

route_length+

demand_day × route_length+

νo + ηd + γt) (17)

Where z1rt = demand_dayt × has_mallr, and z2rt = demand_dayt × has_mallr ×
route_lengthr are the instruments for aggregate_tripsrt and aggregate_tripsrt ×
route_lengthr respectively. The standardized residuals are then added to our second stage
model:

E [supplyrt|x1rt, x2rt, νo, ηd, γt, ert] = exp(π1x1rt + π2x2rt + αhas_mallr+

route_length+

demand_day × route_length+

νo + ηd + γt + ê1rt + ê2rt) (18)

Where x1rt = aggregate_tripsrt and x2rt = aggregate_tripsrt × route_lengthr. We run
this specification separately for within-territory routes and between-territory routes.

Results

Column (3) of Table 5 shows our estimates for the first-stage PPML regressions. On high-
demand days on recreational routes, the aggregate number of trips increases by 4.1%. Panel
A of Table 7 shows the results from our second stage regression using the generalized control
function described above. An increase in the aggregate number of trips by 1%, increases the
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number of minibus taxi trips by 0.96%, and the number of minibuses on the route by 0.99%.

Within- vs between-territory Route Elasticities Panels B and C of Table 7 shows
the results when we run the specification separately for within-territory routes and between-
territory routes. Supply is more elastic on within-territory routes for both the number of
minibus trips and the number of minibus taxis. On within-territory routes, an increase in the
aggregate number of trips by 1% increases the number of minibus taxi trips by 0.93%. This
elasticity is only 0.41% on between-territory routes. Similarly, an increase in the aggregate
number of trips by 1% increases the number of minibus taxis by 0.93% compared to 0.41%
on between-territory routes.

Table A.10 shows the results when we include controls for route length. Here, we lose
significance in our elasticity estimate for within-territory routes, and this estimate is negative
for between-territory routes. One caveat here is that these estimates are unreliable because
the specification is too demanding; Table A.11 shows the first stage when we include controls
for route length. Our instruments are no longer strong shifters for aggregate_trips and
aggregate_tripsrt × route_length. In general, there is a lot of overlap in route lengths for
within-territory routes and between-territory routes; Figure A.5 shows the distribution of
route lengths for both types of routes. It is unlikely that differences in our elasticity estimates
are driven by differences in travel behavior based on the length of the route.

6.2 Summary: Minibus Taxi Short-term Elasticity

Table 8 displays all our elasticity estimates from this section. We also include estimates
from a non-parametric estimation without instrumental variables (columns (1) and (4)). For
the non-parametric estimations, we display the median elasticity over our data range.

In general, both methodologies produce similar estimates and point to a similar pattern
of results. On average, across all routes, the minibus taxi industry has an elasticity close to
1. When the number of aggregate commuter trips increases by 1%, the number of minibus
trips on the route increases by between 0.85%, and 0.96%. This elasticity remains high on
within-territory routes, ranging from 0.93 to 0.94. However, on between-territory routes, the
responsiveness is more muted. On these routes, elasticity ranges between 0.55 and 0.41. In
general, our GCF estimates are more precise, and the NPIV estimation is more demanding
on our data. The difference in elasticity is statistically significant when using the generalized
control function methodology.

Our elasticity estimates rely on the assumption that minibus taxi availability on a route
does not affect commuters’ decisions to travel on that route. We assume that all commuters
who want to travel on a route can find an alternative option, rather than forgoing the trip
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entirely. Under this assumption, our observed aggregate mobility data is equal to latent
demand. If this assumption is violated, our observed increase in commuter trips would be
biased down, and we would thus be overestimating the supply elasticity (and it would be
biased towards 1). We do not think this is a big concern in this setting for two reasons.
First, commuters have varied mobility options outside of minibus taxis, with a large propor-
tion of households walking or using private vehicles as their primary mode of transportation
(see Figure A.1). Second, a violation of this assumption would bias us away from observ-
ing a difference in elasticity between within-territory and between-territory routes, as both
elasticities would be biased towards one, diminishing any difference.

In the next section, we provide evidence showing that associations cannot reallocate
minibuses to between-territory routes as effectively as they can on within-territory routes.
This analysis does not rely on aggregate mobility measures or the assumption outlined above.
We arrive at consistent results demonstrating frictions in supply, further supporting our
confidence in our elasticity estimates.

6.3 Why is the Impact Higher on Within-territory Routes?

Thus far we have seen that the elasticity of minibus taxis is lower on between-territory
routes than on within-territory routes, and that marginal profits are higher on between-
territory routes. In this section, we outline some descriptive evidence showing that as-
sociations face frictions in adding minibuses to between-territory routes. On these routes,
associations must agree on how they are going to share the revenue generated from the route.
One association cannot unilaterally add a new minibus as this could potentially eat into the
profit of the other association with whom they are operating the route. These frictions limit
flexibility.

At the end of the month, associations would like to reallocate their minibuses from non-
recreational routes to recreational routes, where aggregate mobility is higher. They are
able to freely allocate minibuses to recreational routes within-territory, but face additional
frictions when trying to allocate these minibuses between-territory. We use our rich minibus
operation data to test whether we observe this pattern of results. For this exercise, we use
data on the 22 associations which have at least one within-territory route and one between-
territory route. On within-territory routes, we consider only trips made by the association
which controls the route; on between-territory routes, we consider only trips made by the
associations who control the origin and destination grids of the route. This data refinement
allows us to focus on the relevant associations’ reallocation patterns.
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We estimate the below model:

supplyart = exp(ϕr + ξa + αdemand_dayt × within_terrr
+ νdemand_dayt × between_terrr
+ βdemand_dayt × has_mallr × within_terrr
+ ρdemand_dayt × has_mallr × between_terrr + θXrt + ϵart)

(19)

where ξa are association fixed effects. We include additional controls, Xrt, which include day
of the week, month, and holiday fixed effects, as well as a control for the interaction of route
length and demand_day. Based on our hypothesis, we would predict that:

1. α < 0: Associations will remove minibuses from non-recreational routes at the end of
the month.

2. β > 0: Associations will reallocate minibuses to recreational routes within their terri-
tory.

3. 0 ≤ ρ < β: Associations want to reallocate minibuses to recreational routes between-
territory but face negotiation frictions which prevent them from doing so as efficiently
as on within-territory routes.

There are no direct predictions on ν. ν = 0 would suggest that associations in “joint ventures”
face constraints in both directions – in the addition and removal of minibuses on between-
territory routes. ν < 0 would suggest that associations can reduce the number of minibuses
between-territory, and the main constraint is in adding more minibuses.

Table 9 displays the estimated coefficients from equation (19). Columns (1) and (2)
display the results for the total number of minibus taxis operating on a route, and columns
(3) and (4) display the results for the total number of minibus trips. For both measures of
supply, α < 0. On within-territory routes that are not recreational, the number of minibus
taxis decreases by 3.4% at the end of the month, and the number of minibus trips decreases
by 3%. We also see that ν < 0; associations are able to decrease the number of minibus taxis
on between-territory routes. β > 0 for both measures of supply – on recreational within-
territory routes, the number of minibus taxis increases by 2.4%, and the number of trips
increases by 3.3%. On recreational between-territory routes, the response is more muted
and not statistically significant – the number of minibus taxis increases by 1.0%, and the
number of trips increases by 1.5%.

We cannot reject that β = ρ; however, it is worth noting that these results do not take
into account the first-stage effect on demand. Column (5) of Table 9 reports the estimates
using the number of aggregate demand trips as the outcome. On between-territory trips,
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aggregate demand increases by 7.1% on recreational routes, compared to an increase of
3.3% within-territory. As such, these differences in minibus response are even more stark –
associations are severely under-allocating vehicles onto between-territory routes.

7 Theoretical Framework: Minibus Allocation

We present a simple model of how associations allocate their minibus taxis across differ-
ent types of routes. The framework allows us to generate comparative statics for our two
empirical exercises; i) the effect of a decrease in fleet size on route allocation, and ii) the
effect of an increase in aggregate mobility on supply. We can then interpret our observed em-
pirical patterns in terms of the model’s parameters, formalizing our intuition on the impact
of coordination costs on supply.

We consider the decisions of one association operating two types of routes – one within-
territory, and one between-territory. Over some short-term time horizon (each day, or each
week), the association decides how many minibuses to allocate to each route in order to
maximize total profit. In this setting, prices are fixed in the short-term, and are thus treated
as exogenous during these short-term dynamics.34

7.1 Minibus Ridership

Each route has λr agents traveling from the origin of the route to its destination. They
decide whether to take a minibus taxi or some outside option (private vehicle, Uber, bus,
etc.). In this set-up, λr is exogenous and is not affected by the availability of minibus taxis
on the route.

Agents traveling on the route decide whether to use a minibus taxi or their outside
option based on the price pr of the minibus, and the wait time at the taxi rank . Wait time
is decreasing in the number of minibuses br on the route. The proportion of agents on r who
take a minibus is given by π(pr, br), where ∂π

∂p
< 0 and ∂π

∂b
> 0. That is, a higher proportion of

λr will take a minibus taxi if the price of the minibus is lower, and there are more minibuses
operating on the route (i.e, the wait time is shorter). Total minibus ridership on a route r

is thus given by λrπ (pr, br).

7.2 Minibus Supply

The association chooses the number of buses to allocate to their between-territory route
and to their within-territory route – bb and bw respectively. They pay a common cost

34Associations set prices for all routes annually and drivers cannot change them from day to day.
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c0(bb + bw + bout) to allocate a minibus to a route. Here, bout represents the number of
minibuses that are unavailable to operate. An increase in bout increases the marginal cost
of allocation such that the association must allocate fewer minibuses. Associations also pay
additional costs (which may be zero) to allocate minibuses to within-territory routes cw(bw)
and between-territory routes, cb(bb).

The association solves:

max
bw,bb

pw·λwπ(pw, bw) + pb·λbπ(pb, bb)− c0(bw + bb + bout)− cw(bw)− cb(bb) (20)

s.t bw ≥ 0, (21)

bb ≥ 0 (22)

Where, as discussed in the section above, λwπ (pw, bw) and λbπ (pb, bb) is the total minibus
ridership on within-territory routes and between-territory routes respectively.

The first order conditions for the association’s optimization problem are given by:

[bw] : pwλwπ
′(bw) = c′0(bw + bb + bout) + c′w(bw) (23)

[bb] : pbλbπ
′(bb) = c′0(bw + bb + bout) + c′b(bb) (24)

7.3 Model Implications

To simplify our results, we make the below assumption

Assumption 1. πr(br)
′′ ≈ 0 for r ∈ w, a That is, demand is locally linear for small

increases in the number of minibuses on the route.

Proposition 1. ηw ≡ dbw
dbout

, ηb ≡
dbb
dbout

, then under assumption 1.,
ηw
ηb

≈ c′′b
c′′w

When there is a decrease in the overall fleet size, associations allocate the shortfall to
routes with less convex costs.

Proposition 2. ϵw ≡ dlogbw
dlogλw

, ϵa ≡ dlogba
dlogλa

, then under assumption 1.,
ϵw
ϵa

≈

C ′′
a ba
C ′

a

C ′′
w bw
C ′

w

,

where Cr ≡ c0 + cr for r ∈ {w, a}

The ratio of short-term supply elasticity depends on the relative convexity of costs within-
and between-territory. Elasticity will be higher within territory when costs between territory
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are relatively more convex than costs within territory.35

7.4 Summary: Model Implications

Our simple model provides a clear, unified story about allocation costs in this mar-
ket. Our two empirical patterns are consistent with allocation costs being more convex on
between-territory routes. This is in line with qualitative evidence on how associations oper-
ate these routes – by negotiating informal operating agreements with each other. Allocation
to between-territory routes thus face more frictions which translates to higher costs that are
also more convex.

8 The Costs of Segmentation in Informal Transportation

To quantify the costs incurred by Johannesburg commuters as a result of the segmentation
of the informal public transportation network, we consider the additional wait time these
commuters face on between-territory routes during periods of high demand. Our analyses
above show that when aggregate mobility increases, the supply of minibuses on between-
territory routes increases less proportionally than on within-territory routes. We estimate
how much wait times would be reduced if the supply elasticity on between-territory routes
matched the elasticity on within-territory routes. We then assign a monetary value to the
total time lost using value of time travel estimates from the literature.

We use the average minibus headway – time between minibus departures – to approximate
wait times. Assuming passengers arrive uniformly over a given time interval, the average wait
time for each passenger will be half of the minibus headway.36 Thus, we can estimate the total
wait time lost if we know i) the total minibus ridership, ii) the average minibus headway,
and iii) how these values vary within-territory and between-territory. Our counterfactual
scenario does not consider any long-term readjustments to service or ridership if there are
no coordination costs.37

Total Minibus Ridership We first quantify the total number of commuters who use
minibus taxis on both within-territory routes and between-territory routes each day in Jo-

35Relative convexity measures not just how quickly marginal costs are changing (second derivatives c′′b and
c′′w), but also how these changes relate to current marginal costs (first derivatives c′b and c′w) and the scale
of operations (bb and bw) (Palmer, 2003)

36This assumes that the bus capacity is large relative to the passenger arrival rate. That is, every passenger
who arrives within a headway period is able to board the next bus that arrives. Based on our aggregate
minibus ridership counts and estimated headway, this assumption is satisfied.

37For example, we do not take into account any changes in ridership as a result of increased flexibility
between-territory.
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hannesburg. To do this, we combine data from three sources: our smartphone pings dataset,
the 2011 South Africa census, and the 2020 South Africa National Household Transport Sur-
vey (NHTS). We assign each device in our smartphone data to an income category based on
the device’s inferred home location and the average income level for that location, measured
by the census (see Appendix A.6 for more information). Using the NHTS survey, we calculate
the proportion of all trips that are minibus taxi trips by income category.38 We then assign
each device a probability of using a minibus taxi for a trip based on its proxied income group
and the corresponding probability of using a minibus for that income group. We also weight
each device based on the 2011 census so that our smartphone dataset is representative of
the total Johannesburg population. Using these data adjustments to our smartphone trips,
we calculate the total number of minibus trips on all within and between-territory routes
for different time periods throughout the day.39 Using this methodology, we estimate that
on the average day, there are 2, 047, 438 total commuter minibus trips within Johannesburg.
The 2020 NHTS survey reports 1, 979, 758 daily minibus trips within Johannesburg. The
similarity between these two estimates increases the confidence in our aggregation method.40

Average Headway We calculate the average headway on different routes using our data
on minibus trips. We define headway as the average amount of time between minibus
departures. On route-days with less than two minibus departures, we impute a headway
of 24 hours. We estimate headway elasticity using our estimation strategy in section 6,
with average headway as our outcome. On within-territory routes, a 1% increase in demand
decreases headway by approximately -1.2%. On between-territory routes, this elasticity is
-0.3 (see table A.13). To approximate the level shift in headway, we use the fact that our
data provider estimated that they finance 20% of all minibus taxis in operation in South
Africa. We thus scale our minibus count and associated headway to account for all minibuses
in operation. We assume that headway reduces proportionally with the number of minibus
taxis on the route, and that the 20% market share is constant across all routes.41 We thus
scale down our observed headway estimates by 5 uniformly across all routes.

38NHTS asks participants about their trips on a randomly assigned “travel day”. It asks how many trips
they took, and how many trips were taken using a minibus taxi (and other modes).

39Table A.12 provides an example of our estimated minibus ridership on the average non-demand day.
40Note that we do not use the NHTS survey for the absolute number of trips; we only use this survey for

the proportion of trips taken by minibus taxi for each income group.
41Note that in Gauteng province, where Johannesburg is located, and where our data provider is head-

quatered, we estimate that the market share of our data provider is closer to 48% (See appendix A.4). In
this section, we use the more conservative market share of 20% which decreases our headway (and thus wait
time) by more than if we used the 48% estimate.
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Total Time Lost Our estimate of the total time lost is how much total wait time would re-
duce if the headway elasticity on between-territory routes changed from -0.3 to -1.2 (to match
the elasticity within-territory). We consider the total time lost on recreational between-
territory routes on high-demand days. Table 10 displays this calculation. We first document
the baseline statistics on between-territory recreational routes on non-demand days. Column
(1) of Table 10 displays the average baseline headway (in minutes) for different time periods,
and column (2) displays the total number of commuter minibus trips. On average there are
over 200, 000 minibus trips every non-demand day on recreational, between-territory routes.

Column (3) documents the percent increase in aggregate commuter trips moving from
non-demand to high-demand days. Using this percentage change, we calculate the cor-
responding decrease in headway under two scenarios: the status quo where the headway
elasticity is -0.3, and the counterfactual scenario where the elasticity is -1.2. Column (4)
presents the total wait time at baseline, calculated as the product of the total number of
minibus riders and half of the newly calculated status-quo headway. Column (5) shows this
result given the counterfactual headway reduction. The difference between these total wait
times gives us our estimate of the total time lost due to this decreased flexibility. In total,
we estimate that commuters in Johannesburg would save 988, 142 minutes on every high-
demand day on recreational routes if the elasticity on between-territory routes was the same
as that on within-territory routes. This represents a time saving of approximately 4 minutes
per trip on every trip made on these types of routes.42

Value of Time Lost To quantify this lost time monetarily, we assume that the value
of travel time (VTT) is between 50% and 100% of the average wage. This approximation
is based on studies in developed countries which use both stated preferences (see Small
(2012) for a review) and more recently, quasi-experimental methods (Goldszmidt et al.,
2020; Buchholz et al., 2020). Research in developing contexts suggests that the VTT may be
significantly higher in these contexts. Kreindler (2023) estimates that the VTT in Bangalore,
India is 370% of the average hourly wage. Kreindler et al. (2023) also finds that commuters
in Jakarta, Indonesia, value wait time 2.4 times more than actual travel time on the bus.
Given these findings, our approach using 50 - 100% of the average wage likely underestimates
the true monetary value of the additional wait time in this context.

In Johannesburg, South Africa, the modal weekly income category for commuters who
use minibus taxis is R3696 - R6928 (calculation based on the 2020 National Household
Transport Survey). Assuming a 40-hour work week, this translates to an hourly wage range
of R92 to R173.2 ($5.59 to $10.40 using 2020 exchange rates). Applying our VTT estimate of

42The average trip duration is approximately 45 minutes.
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between 50% and 100% of wages, the frictions to flexibility on between-territory routes costs
commuters in Johannesburg between R757, 576 and R2, 852, 437 ($46, 030 and $173, 313) per
day on recreational routes.

9 Conclusion

Informal transportation plays a crucial role in developing countries, yet we know little
about the best way to organize the sector. While governments often mandate that minibuses
organize into associations or cooperatives, our research reveals that this can impose signifi-
cant costs for commuters.

This paper demonstrates that the segmented organizational structure of informal trans-
portation creates supply frictions. The need for inter-association negotiations to allocate
operations introduces frictions that increase operational costs on routes connecting different
association territories. This reduces the system’s overall responsiveness and leads to under-
provision on these between-territory routes. This reduced flexibility has tangible costs for
consumers, resulting in approximately 1 million minutes of additional wait time daily on
between-territory routes.

While we focus on the costs of decentralization, it is important to acknowledge potential
benefits of this organizational structure. Associations may facilitate the creation of new
routes in response to long-term demand shifts, offering a different type of flexibility (Kerzh-
ner, 2022). These benefits may depend on associations’ incentives to grow and compete,
suggesting that multiple associations may be necessary to realize these advantages. More-
over, competition among associations likely leads to lower prices for commuters, as operators
vie for market share near territory boundaries.

Our research contributes to the understanding of optimal design for informal public
transportation systems. By quantifying the inefficiencies introduced by fragmentation, we
provide valuable insights for policymakers considering how to organize and regulate their
informal public transportation industry.
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Figures

Figure 1: Minibus Association Territories

Note: The left panel plots the map of grid associations in Johannesburg, based only on the plurality of
minibus associations operating in that grid during our study period. The right panel displays the same
information filtered to show only grid cells where at least 15 unique minibuses operated and where the
plurality association held more than 22% of the vehicle share (the 25th percentile of both statistics). See
Section 3 for details. RULLDTA represents the Randburg United Local and Long Distance Taxi Association,
and DORLJOTA represents Dobsonville, Roodepoort, Leratong, Johannesburg Taxi Association.
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Figure 2: Minibus Mobility Patterns by Association

(A)
All Minibus Taxi Associations

(B)
Soweto Taxi Services

(C)
Orange Farm Taxi Association

(D)
Ivory Park Taxi Association

Note: This figure displays the operation of associations in Johannesburg in March 2023. Each dot represents
a starting location of a recorded trip, with colors indicating the taxi association. Panel (A) shows the
complete network of all minibus movements. Panels (B), (C), and (D) isolate the movement patterns of three
specific associations: Soweto Taxi Services, Orange Farm Taxi Association, and Ivory Park Taxi Association
respectively, with other associations shown in gray for context.
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Figure 3: Day of Month Mobility by Destination Type (Google Mobility Data)
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Note: Residualized change in mobility by trip category. These plots display the change in mobility in 2022
compared to the same day of the week in 2020, residualized by day of the week. Each data point is the
estimated average difference in mobility on that day, compared to the 15th of the month holding day of the
week constant. The top left panel displays the mobility pattern for trips to retail and recreational locations,
the top right panel displays the mobility pattern for trips to grocery stores and pharmacies, and the bottom
panel displays the mobility pattern for trips to workplaces.
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Figure 4: Impact of Insurance Incidents on Asociation Fleet Size
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Note: These plots show the weekly changes in association fleet size before and after different types of
insurance incidents. The horizontal axis represents weeks relative to the incident (week 0), while the vertical
axis shows the estimated percentage change in fleet size. The panels display effects for different incident
types: all incidents (top left), repossessions (top right), accidents (bottom left), and severe accidents (bottom
right). Events are weighted by the total association fleet size over the full study period. Standard errors are
clustered at the association level and coefficients are estimated using PPML.
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Figure 5: Effect of Insurance Incidents on Route Allocation
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Note: These plots show how different types of insurance claims affect minibus operations on within- and
between-territory routes over time. The horizontal axis shows weeks relative to the incident (week 0), and
the vertical axis represents the estimated percentage change in number of minibuses assigned to the route.
Orange lines with confidence intervals show effects on within-territory routes, while blue lines show between-
territory routes. The panels display effects for: all incidents (top left), repossessions (top right), accidents
(bottom left), and severe accidents (bottom right). Events are weighted by the total association fleet size
over the full study period. Coefficients are estimated using PPML. Standard errors are clustered at the
association level.
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Figure 6: Aggregate Commuter Trips Cyclicality
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Note: These plots show how aggregate mobility varies by day of the month using the 24th as the reference
day. The top panel plots coefficients for each day of the month (eq. 7). The bottom panel plots coefficients
for the interaction of the day of the month and an indicator for if the route is recreational (eq. 8). Standard
errors are two-way clustered at the origin-destination level.
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Figure 7: Non-parametric Estimation of Minibus Supply as a Function of Aggregate Demand
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(b) No. Minibuses
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Note: These plots show the non-parametric relationship between aggregate mobility demand and minibus
taxi supply. The top row estimates the relationship between the number of minibus trips and aggregate
demand, and the bottom row estimates the relationship between the number of minibuses and aggregate
demand. The left column plots the estimated function, and the right column plots the implied elasticities.
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Figure 8: Non-parametric Estimation of Minibus Supply Elasticity by Route Type
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Note: These plots show the non-parametric relationship between aggregate mobility demand and minibus
taxi supply separated by route type. The top row estimates the relationship between the number of minibus
trips and aggregate demand, and the bottom row estimates the relationship between the number of minibuses
and aggregate demand. The left column plots the estimated function, and the right column plots the implied
elasticities. The orange points correspond to the relationship on within-territory routes, and the green points
correspond to the relationship on between-territory routes.
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Tables

Table 1: Summary Stats: Minibus Taxi Trips

Raw Trips Minibus Route
Trips

(1) (2)

N. 40,124,891 7,142,646
N. Unique Vehicles 19,214 8,947
N. Unique Associations 720 527
Median No. Vehicles per Assoc. 8.00 5.00
Mean No. Vehicles per Assoc. 23.87 15.44
Median No. Daily Trips per Veh. 12.00 5.00
Mean No. Daily Trips per Veh. 14.65 6.74

Note: This table presents summary statistics comparing all raw taxi trips as defined by the minibus financier
(Column 1) with trips restricted to established minibus routes (Column 2).

Table 2: Summary Stats: Smartphone Data

Raw Pings All Algorithm Minibus Route
Trips Trips

(1) (2) (3)

N. 373,715,157 9,049,991 510,918
N. Unique Devices 1,087,889 516,558 139,889
Median No. Daily Obs per Device. 19.00 2.00 1.00
Mean No. Daily Obs per Device. 34.56 2.11 1.46

Note: This table summarizes smartphone location data collected from October 2022 to July 2023. Column
(1) shows statistics for raw smartphone pings. Column (2) presents data for all trips identified by our
algorithm within Johannesburg. Column (3) shows the subset of trips that match established minibus taxi
routes.
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Table 3: Effects of Insurance Incidents on Minibus Operation, Association Fleet, and Allo-
cation

Severe
All Incidents Repossessions Accidents Accidents

(1) (2) (3) (4)

Panel A: Minibus Operation −0.121∗∗∗ −0.264∗∗∗ −0.111∗∗∗ −0.182∗∗∗

(0.007) (0.015) (0.012) (0.018)

N. 718,155 718,155 718,155 718,155

Panel B : Fleet Size −0.323∗∗∗ −0.701∗∗∗ −0.315∗∗∗ −0.511∗∗∗

(0.068) (0.167) (0.118) (0.139)

N. 29,925 29,925 29,925 29,925

Panel C : No. Minibuses by Route Type
Within Terr. −0.319∗∗∗ −0.658∗∗∗ −0.471∗∗∗ −0.745∗∗∗

(0.111) (0.242) (0.173) (0.246)
Between Terr. −0.114∗∗ −0.218∗ −0.286∗∗ −0.374∗

(0.054) (0.124) (0.136) (0.216)

Difference −0.205∗∗∗ −0.44∗∗ −0.185 −0.371∗∗

(0.075) (0.172) (0.114) (0.157)

N. 47,070 47,070 47,070 47,070

Minibus/Assoc. FEs Yes Yes Yes Yes
Week FEs Yes Yes Yes Yes

Note: The average effect of incidents on the probability of minibus operation, association fleet size, and the
number of minibuses allocated to within- and between-territory routes. Coefficients represent the average
effect in the first 10 weeks after the incident. Panel A is at the minibus-week level. Each event is an indicator
for whether a minibus had an incident in the previous 10 weeks. Standard errors are clustered at the vehicle
level and coefficients are estimated using OLS. Panels B and C are at the association-week level. Each event
is the total number of incidents in the previous 10 weeks weighted by the total association fleet size over
the full study period. Standard errors are clustered at the association level and coefficients are estimated
using PPML. Column (1) shows the effect for all incidents in the insurance claims data, column (2) shows
the effects for repossessions, column (3) shows the effects for accidents and column (4) shows the effect for
severe accidents (accidents with a claim value larger than 75,000 rand). ∗p<0.1; ∗∗p<0.05; ∗∗∗p<0.01.

51



Table 4: The Impact of Fleet Size on Route Allocation

No. Minibuses Allocated

PPML PPML-IV

Severe
Instrument: All Incidents Repossessions Accidents Accidents

(1) (2) (3) (4) (5)

Fleet Size 0.742∗∗∗ 1.41∗∗∗ 0.507∗∗ 3.01∗∗∗ 2.14∗∗∗

(0.026) (0.300) (0.258) (0.746) (0.679)
Fleet Size × Within Terr. 0.181∗∗∗ 0.718∗∗∗ 0.731∗∗∗ 0.805∗∗∗ 0.630∗∗∗

(0.017) (0.069) (0.106) (0.172) (0.201)

N. 31,130 31,130 31,130 31,130 31,130
Assoc FEs Yes Yes Yes Yes Yes
Week FEs Yes Yes Yes Yes Yes

F-test (1st stage)
Cragg-Donald F-stat 27.984 21.502 17.341 21.996

Note: This table displays the relationship between the total association fleet size and the number of vehicles
allocated to within- and between-territory routes. Regressions are at the association-week-routetype level.
Model (1) estimates the relationship using PPML and models (2) - (5) instrument for the association fleet
size in a given week using the number of incidents (repossessions/accidents/severe accidents) that occurred
10 weeks prior weighted by the total association fleet size over the full study period. Coefficients (2) - (5) are
estimated using PPML-IV. The last panel of the table reports Crag-Donald F-statistics from the first-stages
of the PPML-IV models. Standard errors are bootstrapped and clustered at the association level. ∗p<0.1;
∗∗p<0.05; ∗∗∗p<0.01.
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Table 5: “First-Stage”: Impact of Cyclicality Instrument on Commuter Trips

Commuter Trips

OLS PPML

(1) (2) (3) (4)

Demand Day −0.0003∗∗∗ −0.0273∗∗∗

(0.0001) (0.0054)

Has Mall −0.042∗∗∗ 0.0265
(0.012) (0.0532)

Demand Day × Has Mall 0.001∗∗∗ 0.001∗∗∗ 0.0409∗∗∗ 0.0409∗∗∗

(0.0002) (0.0002) (0.0074) (0.0074)

N. 30,838,368 30,838,368 30,838,368 10,092,192
Day FEs Yes Yes
Route FEs Yes Yes
Weekday FEs Yes Yes
Holiday FEs Yes Yes
Month FEs Yes Yes
Origin FEs Yes Yes
Destination FEs Yes Yes

Note: This table analyzes how the cyclicality instrument (interaction of end of the month with recreational
route) impacts the aggregate number of commuter trips. Coefficients in columns (1) and (2) are estimated
using Ordinary Least Squares, and coefficients in columns (3) and (4) are estimated using Pseudo-Poisson
Maximum Likelihood. “Demand Day” is an indicator for whether the day is at the “end of the month” (after
the 25th and before the 10th). “Has Mall” is an indicator for whether a route has a large mall at either its
origin or destination. The dependent variable is the number of aggregate commuter trips on a given route
on a given day. Regressions without day FEs have weekday, holiday and month FEs. Standard errors are
two-way clustered by origin and destination. ∗p<0.1; ∗∗p<0.05; ∗∗∗p<0.01.
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Table 6: Cyclicality “First Stage” and “Reduced Form” by Route Type

First-Stage Reduced Form

Commuter Trips Minibus Trips No. Minibuses
(1) (2) (3)

Panel A: All Routes

Demand Day × Has Mall 0.041∗∗∗ 0.030∗∗∗ 0.023∗∗∗

(0.007) (0.007) (0.006)

N. 10,092,192 9,555,936 9,555,936

Panel B: Within Terr. Routes

Demand Day × Has Mall 0.033∗∗∗ 0.030∗∗∗ 0.023∗∗∗

(0.009) (0.007) (0.006)

N. 6,637,536 6,270,608 6,270,608

Panel C: Between Terr. Routes

Demand Day × Has Mall 0.071∗∗∗ 0.021∗∗ 0.017∗∗

(0.015) (0.009) (0.008)

N. 3,454,656 3,285,328 3,285,328

Day FEs Yes Yes Yes
Route FEs Yes Yes Yes

Note: This table displays the effect of the cyclicality instrument on commuter and minibus trips by route
type. Coefficients are estimated using Poisson Pseudo-Maximum Likelihood (PPML). Column (1) shows the
first-stage effect on commuter trips, while columns (2) and (3) show reduced-form effects on minibus supply,
measured by the number of minibus trips and unique minibuses respectively. Panel A shows results for all
routes, Panel B for routes within taxi association territories, and Panel C for routes that cross territory
boundaries. All specifications include route and day fixed effects. Standard errors (in parentheses) are two-
way clustered at the origin-destination level. ∗p<0.1; ∗∗p<0.05; ∗∗∗p<0.01.
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Table 7: Supply Elasticity Estimates Using Generalized Control Function (GCF) Approach

Minibus Trips No. Minibuses

(1) (2)

Panel A: All Routes
Commuter Trips 0.960∗∗∗ 0.989∗∗∗

(0.035) (0.034)

N 30,645,024 30,645,024

Panel B: Within Terr. Routes
Commuter Trips 0.929∗∗∗ 0.928∗∗∗

(0.017) (0.016)

N 17,673,040 17,673,040

Panel C: Between Terr. Routes
Commuter Trips 0.406∗∗∗ 0.401∗∗∗

(0.047) (0.047)

N 12,933,984 12,933,984

Difference
Within Terr. - Between. Terr 0.523∗∗∗ 0.527∗∗∗

(0.049) (0.049)

Day FEs Yes Yes
Origin FEs Yes Yes
Destination FEs Yes Yes

Note: This table presents estimates of how minibus taxi supply responds to changes in commuter demand
across different route types. Coefficients are estimated using Pseudo-Poisson Maximum Likelihood (PPML)
with a generalized instrumental variable control function. Commuter Trip is the number of aggregate com-
muter trips on route r and day t. Column (1) shows the effect of aggregate demand on the number of minibus
taxi trips, and column (2) shows the effect on the number of minibus taxis on the route. Panel A shows
the average elasticity for all routes, panels B and C show the elasticity for within- and between-territory
routes respectively. The last panel shows the difference between the estimates for within-territory routes
and between-territory routes. Standard errors are obtained via Bayesian bootstrap and are clustered at the
origin level. ∗p<0.1; ∗∗p<0.05; ∗∗∗p<0.01.
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Table 8: Summary of Estimated Elasticities

Minibus Trips No. Minibuses

NP NPIV GCF NP NPIV GCF
(1) (2) (3) (4) (5) (6)

Overall Elasticity 1.352∗∗∗ 0.854∗∗∗ 0.960∗∗∗ 1.441∗∗∗ 0.900 0.989∗∗∗

(0.209) (0.119) (0.035) (0.184) (0.694) (0.034)

Within Terr. Elasticity 1.281∗∗∗ 0.943∗∗∗ 0.929∗∗∗ 1.403∗∗∗ 0.976∗ 0.928∗∗∗

(0.250) (0.139) (0.017) (0.208) (0.539) (0.016)

Between Terr. Elasticity 0.005 0.546 0.406∗∗∗ 1.875 0.546 0.401∗∗∗

(1.949) (0.722) (0.047) (1.441) (0.709) (0.047)

Within Terr. − Between Terr. 1.276 0.397 0.523∗∗∗ −0.472 0.430 0.527∗∗∗

(2.045) (0.756) (0.049) (1.481) (0.952) (0.049)

Day FEs Yes Yes Yes Yes Yes Yes
Route FEs Yes Yes Yes Yes
Origin FEs Yes Yes
Destination FEs Yes Yes

Note: This table summarizes our estimates of elasticities across methodologies. Columns (1) and (2) estimate
the elasticity using non-parametric estimation (NP) without an instrumental variable. Columns (3) and (4)
use non-parametric instrumental variable (NPIV) estimation, and columns (5) and (6) use a generalized
control function approach (GCF). Columns (1), (3), and (4) display elasticities for the number of minibus
trips, while (2), (4), and (6) display results for the number of minibus vehicles. All standard errors are
obtained via bootstrapping and are clustered at the origin level.
∗p<0.1; ∗∗p<0.05; ∗∗∗p<0.01.
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Table 9: Reallocation by Route Type

No. Minibuses Minibus Trips Commuter Trips

(1) (2) (3) (4) (5)

Demand Day × Within Terr. (α) −0.034∗∗∗ −0.029∗∗∗ −0.021∗∗

(0.005) (0.006) (0.007)

Demand Day × Between Terr. (ν) −0.029∗∗∗ −0.024∗∗∗ −0.050∗∗∗

(0.007) (0.007) (0.010)

Demand Day × Has Mall × Within Terr. (β) 0.024∗∗ 0.024∗∗ 0.033∗∗∗ 0.033∗∗∗ 0.033∗∗∗

(0.010) (0.010) (0.011) (0.011) (0.009)

Demand Day × Has Mall × Between Terr. (ρ) 0.010 0.010 0.015 0.015 0.071∗∗∗

(0.011) (0.011) (0.012) (0.012) (0.015)

Within Terr. - Between Terr. 0.014 0.017 −0.038∗∗

[p-value] [0.373] [0.291] [0.050]

N. 15, 692, 466 15, 692, 466 15, 692, 466 15, 692, 466 10, 092, 192
Day FEs Yes Yes
Route FEs Yes Yes Yes Yes Yes
Assoc. FEs Yes Yes Yes Yes Yes
Weekday FEs Yes Yes Yes
Holiday FEs Yes Yes Yes
Month FEs Yes Yes Yes

Note: This table examines how end-of-month timing affects associations’ allocation of minibuses across
different route types. Coefficients are estimated using Pseudo-Poisson Maximum Likelihood. Columns (1)
and (2) use the number of minibus taxis as the dependent variable, columns (3) and (4) use the number of
minibus trips as the dependent variable, and column (1) uses the number of aggregate commuter trips as
the dependent variable. Greek letters in parentheses correspond to the coefficients in eq.(19). Within Terr -
Between Terr reports the difference between Demand Day×Has Mall×Within Terr and Demand Day×Has
Mall×Between Terr and reports the p-value of the difference in brackets. Standard errors are two-way
clustered by origin and destination. ∗p<0.1; ∗∗p<0.05; ∗∗∗p<0.01.
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Table 10: Total Lost Time on Between-Territory Recreational Routes

Baseline Baseline Minibus Mobility Total Wait Time Total Wait Time
Headway (mins) Ridership Increase (%) w/ elasticity of -0.33 w/ elasticity of -1.2 Difference

(1) (2) (3) (4) (5) (6)

12:00am - 4:59am 55.55 12, 779 −6.63 336, 118 355, 078 −18, 960
(240) (501) (555)

5:00am - 9:59am 51.30 57, 478 11.47 1, 565, 857 1, 403, 451 162, 406
(2, 053) (4, 293) (4, 758)

10:00am - 2:59pm 48.89 74, 545 28.01 2, 138, 026 1, 564, 041 573, 984
(7, 257) (15, 174) (16, 816)

3:00pm - 7:59pm 57.93 59, 853 13.78 1, 830, 529 1, 600, 662 229, 867
(2, 906) (6, 077) (6, 734)

8:00pm - 11:59pm 56.05 9, 295 16.01 277, 652 236, 806 40, 846
(516) (1, 080) (1, 197)

Total 213, 951 6, 148, 180 5, 160, 038 988, 142
(12, 494) (26, 123) (28, 950)

Note: This table calculates the total time lost on between-territory recreational routes at the end of the
month. Columns (1) and (2) display the baseline headway and number of minibus rides respectively for
each time period. Column (3) displays the percent increase in demand moving from non-demand days to
demand days. Column (4) shows the estimated total wait time using the baseline headway elasticity of
−0.33, and column (5) shows what the wait times would be with an elasticity of −1.2. Column (6) displays
the difference. Standard errors are displayed in parentheses and calculated using the headway elasticity
standard errors (Table A.13)
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A.1 Appendix Figures

Figure A.1: Main Mode of Transportation
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Note: Proportion of households that mentioned each mode as their main mode of transportation in Gauteng
Province. Source: South Africa National Household Travel Survey, 2020
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Figure A.2: Main Mode of Transportation by Income

Walk Minibus Taxi Bus Train Taxi/Uber/Lyft Private Vehicle Other

0
20

40
60

80
10

0

R0−R1,500 R1,501−R4,500 R4,501−R11,000 R11,001−R30,000 >R30,000

Pe
rc

en
ta

ge
 (%

)

Note: Proportion of households that mentioned each mode as their main mode of transportation by income
group in Gautend Province. Source: South Africa National Household Travel Survey, 2020
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Figure A.3: Minibus Taxi Route Census – 2022

Note: This map plots all routes collected during a census of minibus taxi routes in the Johannesburg area
in 2022 by WhereIsMyTransport (WIMT).
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Figure A.4: Grids with Minibus Ranks

Note: Grids with a minibus taxi rank (stop) as observed using the census of minibus taxi routes in Johan-
nesburg. Grids are colored based on the association they are assigned to. Dark grey grids have a minibus
rank but are not assigned to any association. Light grey grids do not have a minibus rank.
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Figure A.5: Distribution of Route Lengths
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Note: Distribution of the route lengths by type of route. Route length is defined as the Euclidean distance
between the centroids of the origin and destination grids. The blue bars plot the distribution of route lengths
for within-territory routes, and the red bars plot this distribution for between-territory routes.
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Figure A.6: Route Prices: Minibus Taxis and BRT Lines
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Note: Route fares for minibus taxis and government provided bus rapid transit (BRT). BRT lines are priced
based on total km travelled. Route distance bins are based on the BRT pricing schedule. Plotted minibus
taxi prices are the average fare for all minibus routes in each distance bin
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Figure A.7: Reasons for not Using Modes of Transportation
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Note: Reasons households gave for not using each mass transit mode. The following options are classified as
“Long Travel Time”: “Travel time is too long/slow” and “Have to change transport (transfer)”. “Expensive”
has the following options: “Mode too expensive”. “Not Safe” has the following options: “Too much crime (too
dangerous)” and “Too many accidents”. For minibus taxis only, the following options were also given and
categorized under “Not Safe”: “Too much violence/wars”, “Taxis not roadworthy”, “Drivers drive recklessly”.
“Not Flexible” has the following options: “No «mode» available at all”, “«mode» not available often enough”,
“«mode» not available at the right times”, “«mode» don’t go where needed”. “Unreliable” has the following
options: “«mode» always late”. “Uncomfortable” has the following options: “«mode» too crowded”. “Too
Far” has the following options: “Station too far from home”, “Station too far from destination”. Source:
South Africa National Household Travel Survey, 2020
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Figure A.8: Effect of Insurance Incidents on Vehicle Operation

All incidents
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Note: Weekly coefficients for the effect of different insurance claim types on the probability of minibus
operation. Standard errors are clustered at the minibus level.
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Figure A.9: Distribution of Commuter Trips and Minibus Supply over 10 Months

(a) Aggregate Commuter Trips
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Note: This figure plots the log distribution of the number of commuter trips and minibus supply at the route
level over the 10-month study period. Panel (a) plots the number of commuter trips. Panel (b) shows two
separate measures of minibus supply - the number of minibus trips (left panel) and the number of minibus
taxis (right panel). Due to the presence of zeros in the data, we add 1 to all counts before taking logs (i.e.,
log(x+1) transformation) to allow inclusion of zero-valued observations.

68



Figure A.10: Distribution of the number of Google Reviews
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Note: Distribution of the number of mall ratings on Google for grids with with at least one mall.
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Figure A.11: Minibus Grids with a Large Mall

Note: Grids with a large mall in the Johannesburg Metropolitan Area. Grey grids represent our full sample
of grids which contain a minibus taxi rank. Grids highlighted in orange contain a large mall.
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Figure A.12: Non-parametric Estimation of Minibus Trips as a function of Aggregate De-
mand
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Note: This figures plot the estimates from the non-parametric estimation of the number of minibus trips as
a function of aggregate demand, evaluated over the full range of aggregate demand values.

Figure A.13: Distribution of Aggregate Demand Counts

Note: This figure presents the bar chart of the commuter trip counts at the route-day level.
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Figure A.14: Variation in Minibus Supply on between-territory Routes

Log of Standard Deviation in Weekly Minibus Counts
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Note: This figure compares variation in minibus supply on between territory routes. For each between-
territory route, we calculate the standard deviation of weekly minibus counts over our study period, sepa-
rately for total route supply (combined service from both associations) and for each individual association’s
contribution. We then take the log of these standard deviations to account for right-skewed distributions.
The figure plots the distribution of these log standard deviations at the route level.
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Figure A.15: Proportion of Trips Within-Territory By Week

Note: Figure shows scatter plot at the minibus-week level. Y-axis shows proportion of within-territory trips
in current week, X-axis shows proportion in previous week, both residualized by association size. Orange
dots represent binned averages. Grey dotted line indicates 45-degree reference line.
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A.2 Appendix Tables

Table A.1: Summary Stats – Minibus Taxi Routes

All Minibus Recreational Within Terr. Between Terr.
Routes Routes Routes Routes

Prop. Within Terr. 0.58 0.52 1.00 0.00
Prop. CBD Route 0.07 0.01 0.08 0.07
Avg. Route Length 21.58 21.08 19.99 23.77

N. 101,442 26,640 58,896 42,546

Note: Summary Statistics for different categories of routes. The first column provides statistics for all routes
in our data. The second column provides statistics for routes categorized as recreational, the third column for
routes categorized as being within-territory, and the fourth column for routes categorized as being between-
territory.

Table A.2: Summary Stats – Minibus Route Trips

Minibus Trips Commuter Trips

N. Routes w/ ≥ 1 Trip 31,433 33,198
Median Trip Duration (min) 31.32 46.22
Mean Trip Duration (min) 76.54 101.74
Median No. Trips per day 0.00 0.00
Mean No. Trips per day 0.51 0.05
Median No. Vehicles/Devices per day 0.00 0.00
Mean No. Vehicles/Devices per day 0.44 0.05

Note: Statistics on trips on minibus routes. The first column displays statistics for the minibus taxi trips
and the second column displays statistics for aggregate commuter trips constructed from smartphone pings.
“N. Routes w/ ≥ 1 Trip” is the number of routes that have at least one minibus or aggregate trip during our
observation period.
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Table A.3: Price by Route Type

Price

(1) (2) (3)

Constant 15.4∗∗∗ 15.6∗∗∗

(0.283) (0.343)

Within Terr. −0.689∗∗ −0.746∗∗ −0.069
(0.315) (0.337) (0.280)

Route Length 0.284∗∗∗ 0.278∗∗∗ 0.237∗∗∗

(0.008) (0.009) (0.013)

Dist. to CBD −0.016 −0.217∗∗∗

(0.014) (0.042)

N. 1,167 1,167 1,167
Origin FEs Yes
Destination FEs Yes

Note: Route prices by route type. Pricing data is from the WIMT census of minibus taxi routes collected
in 2022. Within terr is an indicator for whether the route is within territory, Route length is the demeaned
total route distance, dist. to cbd is the minimum distance to the Johannesburg central business district.
Standard errors are two-way clustered by origin and destination. ∗p<0.1; ∗∗p<0.05; ∗∗∗p<0.01.

Table A.4: Minibus and Commuter Trips by Route Type

Minibus Trips Commuter Trips

(1) (2) (3) (4)

Route Length −0.17∗∗∗ −0.15∗∗∗ −0.23∗∗∗ −0.22∗∗∗

(0.02) (0.01) (0.01) (0.01)

Within Terr. 1.22∗∗∗ 0.18∗∗∗

(0.15) (0.05)

N. 30,645,024 30,645,024 30,838,368 30,838,368
Origin FEs Yes Yes Yes Yes
Destination FEs Yes Yes Yes Yes

Note: Coefficients are estimated using pseudo-Posson Maximum Likelihood. Standard errors are two-way
clustered at the origin-destination level. Route length is the Euclidean distance in Km between the origin
grid centroid and destination grid centroid.
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Table A.5: Covariate Balance for Minibuses with and without Insurance Claims

Prop. Trips Assoc No. Unique
Within Terr. Fleet Size Routes

Had an Incident 0.003 −13.4∗∗ −2.44
(0.008) (5.37) (1.58)

Was Repossessed −0.036∗∗∗ 17.6∗ −7.93∗∗∗

(0.014) (9.51) (2.81)

Had an Accident 0.016 −14.9 7.53∗∗∗

(0.014) (9.67) (2.86)

Had a Severe Accident 0.015 −13.7 0.652
(0.019) (13.2) (3.92)

Control Mean 0.847 147.1 36.5
N. 8,841 8,042 8,841

Note: Difference in characteristics between minibuses with an incident and those without for minibuses that
operate on a minibus route in Johannesburg. Each row is a separate regression. Prop. Within-terr trips
is the proportion of all trips taken by that vehicle that are on within territory routes. Assoc fleet size is
the size of the association (total number of minibuses) that the vehicle belongs to, and No. Unique Routes
is the number of unique routes the vehicle operated on during the time period. The control mean is the
average value of each independent variable for the minibuses with no incident reported during our time
period. ∗p<0.1; ∗∗p<0.05; ∗∗∗p<0.01.

Table A.6: The Impact of Insurance Incidents on Minibus Operation, with Controls

Minibus Operation

Severe
All Incidents Repossessions Accidents Accidents

(1) (2) (3) (4)

10-week Average −0.092∗∗∗ −0.198∗∗∗ −0.090∗∗∗ −0.129∗∗∗

(0.007) (0.013) (0.013) (0.019)

N. 647,235 647,235 647,235 718,155
Minibus. FEs Yes Yes Yes Yes
Week FEs Yes Yes Yes Yes

Note: Same regression as in Panel A of Table 3 with controls for the interaction of post-incident indicator
and minibus association fleet size, total number of routes minibus operated on, and number of trips taken.
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Table A.7: Supply Response to Partner Association on Between-territory Routes

Number of Minibuses

Association A Association A
(1) (2)

Contant 1.44∗∗∗

(0.075)

Association B −0.404∗∗∗ −0.372∗∗∗

(0.098) (0.054)

N. 33,414 33,414
Day FEs Yes
Route FEs Yes
Notes: ∗p<0.1; ∗∗p<0.05; ∗∗∗p<0.01.

Note: This table examines how associations respond to changes in their partner’s supply on between-territory
routes. The dependent variable is the number of minibuses allocated by one association, and the key
independent variable is the number of minibuses allocated by their partner association on the same route-
day. The unit of observation is a route-day. The sample includes all between-territory routes served by two
associations between October 2022 and July 2023. ∗p<0.1; ∗∗p<0.05; ∗∗∗p<0.01.

77



Table A.8: Cyclicality “First Stage” and “Reduced Form” by Route Type

First-Stage Reduced Form

Commuter Trips Minibus Trips No. Minibuses
(1) (2) (3)

Panel A: All Routes

demand_day × has_mall 0.045∗∗∗ 0.032∗∗∗ 0.026∗∗∗

(0.008) (0.005) (0.005)

demand_day × has_mall × dist_quintile_2 −0.020 −0.018∗∗∗ −0.013∗∗∗

(0.013) (0.006) (0.004)

demand_day × has_mall × dist_quintile_3 −0.025 −0.006 −0.006
(0.021) (0.005) (0.005)

demand_day × has_mall × dist_quintile_4 0.018 0.005 −0.006
(0.029) (0.008) (0.007)

demand_day × has_mall × dist_quintile_5 −0.034 −0.022∗∗∗ −0.013
(0.063) (0.007) (0.009)

N. 10,092,192 9,555,936 9,555,936

Panel B: Within Terr. Routes

demand_day × has_mall 0.038∗∗∗ 0.031∗∗∗ 0.025∗∗∗

(0.010) (0.006) (0.006)

demand_day × has_mall × dist_quintile_2 −0.051∗∗∗ −0.014∗∗ −0.009∗∗∗

(0.018) (0.006) (0.003)

demand_day × has_mall × dist_quintile_3 −0.011 0.002 0.004
(0.031) (0.006) (0.004)

demand_day × has_mall × dist_quintile_4 0.025 0.006 −0.007
(0.043) (0.009) (0.007)

demand_day × has_mall × dist_quintile_5 −0.091 −0.030∗∗∗ −0.024∗∗

(0.072) (0.009) (0.010)

N. 6,637,536 6,270,608 6,270,608

Panel C: Between Terr. Routes

demand_day × has_mall 0.071∗∗∗ 0.030∗ 0.026∗∗

(0.018) (0.017) (0.011)

demand_day × has_mall × dist_quintile_2 0.020 −0.024 −0.022∗∗

(0.026) (0.017) (0.011)

demand_day × has_mall × dist_quintile_3 −0.044 −0.013 −0.018
(0.030) (0.018) (0.013)

demand_day × has_mall × dist_quintile_4 0.007 −0.003 0.006
(0.043) (0.036) (0.032)

demand_day × has_mall × dist_quintile_5 0.061 0.058 0.085∗∗

(0.110) (0.038) (0.039)

N. 3,454,656 3,285,328 3,285,328

Day FEs Yes Yes Yes
Route FEs Yes Yes Yes

Note: This table replicates the estimates from Table 6 but includes controls for route distance quintiles.
∗p<0.1; ∗∗p<0.05; ∗∗∗p<0.01.
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Table A.9: Reduced Form – Cyclical Instrument on Minibus Supply

Minibus Trips No. Minibuses

(1) (2) (3) (4) (5) (6)

demand_day 0.015∗∗∗ 0.0003 0.003 −0.008∗∗∗

(0.005) (0.004) (0.005) (0.003)

has_mall 0.027 0.028
(0.080) (0.082)

demand_day × has_mall 0.030∗∗∗ 0.030∗∗∗ 0.023∗∗∗ 0.023∗∗∗

(0.007) (0.007) (0.006) (0.006)

N. 9,555,936 30,645,024 9,555,936 9,555,936 30,645,024 9,555,936
Day FEs Yes Yes
Route FEs Yes Yes Yes Yes
Weekday FEs Yes Yes Yes Yes
Holiday FEs Yes Yes Yes Yes
Month FEs Yes Yes Yes Yes
Origin FEs Yes Yes
Destination FEs Yes Yes

Note: Coefficients are estimated using Pseudo-Poisson Maximum Likelihood. demand_day is an indicator
for whether the day is at the “end of the month” (after the 25th and before the 10th). has_mall is an
indicator for whether a route has a large mall at either its origin or destination. For (1), (2), and (3), the
dependent variable is the number of minibus taxi trips on a given route on a given day. For (4), (5), and
(6), the dependent variable is the number of minibus taxis on a given route on a given day. Standard errors
are two-way clustered by origin and destination. ∗p<0.1; ∗∗p<0.05; ∗∗∗p<0.01.
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Table A.10: The effect of aggregate demand on minibus taxi supply by route type, controlling
for route length

Minibus Trips No. Minibuses

Within Terr. Between Terr. Within Terr. Between Terr.
(1) (2) (3) (4)

Demand Trips 0.150 −0.907∗∗ 0.140 −0.881∗∗

(0.130) (0.406) (0.113) (0.387)

Within Terr. - Between Terr. 1.057 1.021
Day FEs Yes Yes Yes Yes
Origin FEs Yes Yes Yes Yes
Dest FEs Yes Yes Yes Yes
N. 17,673,040 12,933,984 17,673,040 12,933,984
Notes: ∗p<0.1; ∗∗p<0.05; ∗∗∗p<0.01.

Note: Coefficients are estimated using Pseudo-Poisson Maximum Likelihood with a generalized instrumental
variable control function and include controls for route length. aggregate_trips is the number of aggregate
demand trips on route r and day t. Column (1) and (3) show the effect of aggregate demand on the number
of minibus taxi trips, and columns (2) and (4) show the effect on the number of minibus taxi vehicles on the
route. Standard errors are two-way clustered by origin and destination. ∗p<0.1; ∗∗p<0.05; ∗∗∗p<0.01.
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Table A.11: First Stages by Route Type and Distance

Within Terr. Between Terr.

Dependent Variables: commuter_trips commuter_trips × commuter_trips commuter_trips ×
route_length route_length

Model: (1) (2) (3) (4)
Poisson OLS Poisson OLS

has_mall 0.047 1.21∗∗∗ -0.052 0.063
(0.064) (0.407) (0.096) (0.043)

route_length -0.237∗∗∗ 0.049∗∗∗ -0.179∗∗∗ 0.014∗∗∗
(0.007) (0.006) (0.008) (0.003)

demand_day × route_length 0.011∗∗ -0.017∗∗∗ -0.009 -0.003∗∗∗
(0.005) (0.003) (0.006) (0.0009)

demand_day × has_mall -0.356∗∗ 0.146∗∗ 0.265∗ -0.029∗∗∗
(0.149) (0.060) (0.144) (0.008)

demand_day × has_mall × route_length -0.025∗∗∗ 0.078∗∗∗ 0.017 0.012∗∗∗
(0.009) (0.012) (0.012) (0.004)

N. 17,866,080 17,904,384 12,933,984 12,933,984
Day FEs Yes Yes Yes Yes
Origin FEs Yes Yes Yes Yes
Destination FEs Yes Yes Yes Yes

Note: First stage regressions for the instruments of demand_trips and demand_trips × route_length.
route_length is demeaned so that other variables can be interpreted at the average route length. ∗p<0.1;
∗∗p<0.05; ∗∗∗p<0.01.

Table A.12: Total Minibus Commuter Trips – Recreational Routes on Non-demand days

Within Terr. Between Terr.
Routes Routes

12:00am - 4:59am 27,455 12,779
5:00am - 9:59am 153,924 57,478
10:00am - 2:59pm 258,603 74,545
3:00pm - 7:59pm 157,010 59,853
8:00pm - 11:59pm 22,612 9,295

Total 619,604 213,950

Note: This table provides the estimated count of the number of minibus taxi trips taken by commuters in
Johannesburg on recreational routes on non-demand days using a combination of smartphone data, census
data, and household travel surveys.
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Table A.13: Estimated Headway Elasticity

Minibus Headway

NP NPIV GCF
(1) (2) (3)

Overall Elasticity 1.352∗∗∗ −0.820 −0.981∗∗∗

(0.348) (0.588) (0.022)

Within Terr. Elasticity −0.797 −1.007 −1.190∗∗∗

(0.862) (1.231) (0.023)

Between Terr. Elasticity 2.108∗∗ −0.599∗ −0.331∗∗∗

(1.023) (0.353) (0.011)

Within Terr. − Between Terr. −2.905∗∗ −0.408 −0.859∗∗∗

(1.346) (1.295) (0.027)

Day FEs Yes Yes Yes
Route FEs Yes Yes
Origin FEs Yes
Destination FEs Yes

Note: This table summarizes our estimates of the elasticity of average headway. Columns (1) and (2)
estimate the elasticity using non-parametrics (NP) without an instrumental variable. Columns (3) and (4)
use non-parametric instrumental variable (NPIV) estimation, and columns (5) and (6) use a generalized
control function approach (GCF). Columns (1), (3), and (4) display elasticities for the number of minibus
trips, while (2), (4), and (6) display results for the number of minibus vehicles. All standard errors are
obtained via bootstrapping and are clustered at the origin level.
∗p<0.1; ∗∗p<0.05; ∗∗∗p<0.01.
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A.3 More on Minibus Taxi Operations

In South Africa, the minibus taxi industry is organized around associations. All minibus
owners and operators must be a member of an association. These associations control most
aspects of the industry’s operations, forming the backbone of its structure. Associations
tightly control membership, typically only allowing new owners who are currently drivers
within the association, thus maintaining a close network of operators. Members are required
to pay monthly fees to retain status. To prevent the concentration of power within associa-
tions and maintain equity, associations often limit the number of minibuses each individual
can own.

South African associations’ territories are closely tied to historical apartheid “townships”.
The non-white populace was forcibly relocated to these townships outside the Central Busi-
ness District (CBD) in Johannesburg during the 1950s. The minibus taxi emerged as a
way to transport residents within the townships and into the CBD. After the deregulation
of the industry post-apartheid, the industry grew exponentially, and local minibuses aggre-
gated into regional associations. As such, association territories are highly correlated with
historical township boundaries; see Figure A.16.

Within this organizational framework, the relationship between drivers and vehicle owners
is structured around rental agreements. Drivers typically operate on daily or weekly fee
structures, paying a set amount to owners and retaining the remaining profits. Drivers
are responsible for fuel costs, and owners cover all other expenses related to the vehicle –
maintenance, licensing, etc.

The day-to-day operations of minibus taxis are centered around taxi ranks, which serve
as hubs for passenger pickup and dropoff. These ranks come in two main types: large,
formal ranks that resemble garages and serve multiple routes, and smaller roadside ranks
that are essentially curb-side stops serving single routes. At these ranks, operations are often
managed by conductors who organize the supply of minibuses. They maintain the queues of
minibuses, and can call for additional vehicles when demand is high.

Despite the organized structure of associations and ranks, the minibus taxi industry
faces significant challenges, particularly related to competition and violence. The industry
is plagued by conflicts stemming from both inter-association and intra-association rivalries.
Associations often engage in turf wars, fighting for control over ambiguous or overlapping
routes. Within associations, owners and drivers compete for access to the most profitable
routes. This fierce competition can escalate to property damage, such as broken windshields,
and in more severe cases, has led to shoot-outs and even assassinations.
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Figure A.16: Association Territories and Historical Townships

Note: The left panel plots the map of grid associations in Johannesburg, as measured by minibus operations
in that grid. Each color corresponds to a different association. RULLDTA is the common acronym for the
Randburg United Local and Long Distance Taxi Association, and DORLJOTA is the common acronym for
the Dobsonville, Roodepoort, Leratong, Johannesburg Taxi Association. The right panel plots the historical
map of designated residential areas during Apartheid. Source: McKay and Bell (2011).
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A.4 Minibus Data Representativeness

We examine how representative our data on minibuses is of the full market. To do so,
we rely on published gazettes of all applications for minibus operating licenses.

The Department of Transport for each province in South Africa is required to publish all
operating license applications for minibus taxi operations each week. These gazettes contain
information on the type of application (new operating license or transfer of operating license),
the routes the owner is applying for, and the association the owner belongs to. We digitize
these gazettes from March of 2017 until March of 2020. After 2020, the printing works
department was backlogged due to COVID, and as far as we are aware, there have been no
further gazettes published for Johannesburg since.

We compare the number of associations and the flow of vehicles in our minibus data to
the associations and flow of applications for operating licenses in the gazette. Our minibus
data contains observations from 95% of all associations in the gazette that applied for a new
operating license for a route within Johannesburg between March 2017 and March 2020.
The data share of these associations is also correlated with the number of applications of the
association in the gazette. Figure A.17 displays this correlation. Associations that applied
for more licenses also have more vehicles in our data on average.

Our data partner estimates that they finance 20% of all minibus taxis nationwide. Our
analyses using the gazette data estimate that within Johannesburg, this proportion is closer
to 48%. We calculate the average flow of new vehicles in our data set and compare this to
the average flow of new operating licenses (note that we cannot calculate the stock number
of minibuses in operation using the published licenses because we do not observe when a
minibus stops operating). In our data, on average, 270.8 new minibuses are added each
month. According to the gazette, there are on average 563.4 new operating license applica-
tions each month suggesting that our data partner finances approximately 48% of these new
minibuses. This discrepancy with their nationwide estimate of 20% is likely because their
market penetration is much lower in other parts of South Africa. The company headquarters
are in Gauteng and this encompasses the lion’s share of their operations.

The gazette is our best measure of the flow of minibuses operating in South Africa. Of
course, it may be the case that some minibuses operate without applying for an operating
license. It may also be the case that applications are denied and thus the number of applica-
tions is an overestimate of the total number of minibuses operating. Anecdotally, applying
for an operating license is low-cost and the department of transportation eventually approves
all the applications they receive (though they typically have a very large backlog).
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Figure A.17: Association Representation
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Note: Binned correlation between the number of unique vehicles per association in our data and the number of
new operating licenses the association applied for between 2017 and 2020. Each observation is an association
which applied for at least one operating licence for a rout in Johannesburg between March of 2017 and March
of 2020.
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A.5 Minibus Financier Pre-processed Data

Our minibus financier’s tracker receives pings from each minibus taxi every 20 seconds.
They first pre-process the raw pings into their own definition of trips before sharing this data
with us. We use the pre-processed trips data to define minibus operations on our sample of
routes.

Below are the events as defined by the financier;

Stop: A stop is any event in which the average speed of the minibus drops below 5km/h.
Average speed is calculated using the time and distance between GPS pings.

Long-stop: A long-stop occurs when more than 5 minutes have elapsed, and less than
200m of odometer distance is traveled.

Base: A base a the clustering of long-stops for the minibus based on a DB scan clustering
algorithm with minimum distance set to 150m, and minimum number of observations set to
3.

Trip: A trip (what we have access to) is any event stating at a base and ending at a base
with more than 1km of distance traveled.
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A.6 Smartphone Data Representativeness

We examine how representative our smartphone data is of the total Johannesburg pop-
ulation and the income distribution. We compare the proportion of devices from a given
home location to the population proportion and income proportion of that home location as
measured by the South Africa 2011 census.

We first assign each smartphone device in our data to a census ward based on the modal
ward where the device is located between 1am and 5am. The South Africa census divides
Johannesburg into 506 wards.

Figure A.18 shows that the number of smartphone devices in our data is positively
correlated with the population in Johannesburg. However, the data is biased towards higher
income residents in Johannesburg. Figure A.19 plots the proportion of smartphone devices
in our data on the percent of the population under the poverty line. We observe more devices
from wards with a lower proportion of the population under the poverty line as defined by
South Africa.

Given this income imbalance, we re-run our main results using data that is weighted in
order to be more representative of all income levels. In each ward, we calculate the proportion
of the population that lives in that ward and the proportion of all our smartphone devices
that are assigned a home in that ward. The device weight is the ratio of these two values.
Table A.14 shows the first stage of our instrumental variable using weights and Table A.15
displays the main results. The pattern of results is similar to our main specification, but
estimates are more noisy.
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Figure A.18: Smartphone Representativeness: By Population
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Note: Binscatter plot of the correlation of observed smartphone devices on the total population. Each
observation is a ward in South Africa (from the 2011 South Africa Census).

Figure A.19: Smartphone Representativeness: Share below Poverty
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Note: Binscatter plot of the number of observed smartphone devices per person on the percent of the
population under the poverty line. Each observation is a ward in South Africa (from the 2011 South Africa
Census).
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Table A.14: First Stage Using Reweighed Data

OLS PPML

(1) (2) (3) (4)

demand_day −0.0004 −0.039∗

(0.0003) (0.023)

has_mall −0.018∗∗ −0.022
(0.008) (0.068)

demand_day × has_mall 0.001∗∗ 0.001∗∗ 0.070∗∗ 0.070∗∗

(0.0007) (0.0007) (0.031) (0.031)

N. 30,838,368 30,838,368 30,838,368 10,092,192
Day FEs Yes Yes
Route FEs Yes Yes
Weekday FEs Yes Yes
Holiday FEs Yes Yes
Month FEs Yes Yes
Origin FEs Yes Yes
Destination FEs Yes Yes

Note: This table replicates results from Table 5 but uses reweighed smartphone trips data. ∗p<0.1; ∗∗p<0.05;
∗∗∗p<0.01.
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Table A.15: Summary of Results: Estimated Elasticities Using Reweighed Data

Minibus Trips No. Minibuses

NPIV GCF NPIV GCF
(1) (2) (3) (4)

Overall Elasticity 0.345 0.581∗∗ 0.345 0.577∗∗

(0.562) (0.238) (0.592) (0.239)

Within Terr. Elasticity 0.831 0.731∗∗∗ 0.830 0.605∗∗∗

(0.732) (0.225) (0.915) (0.228)

Between Terr. Elasticity 0.633 0.599∗∗∗ 0.628 0.348
(0.711) (0.266) (0.510) (0.287)

Within Terr. − Between Terr. 0.199 0.132 0.203 0.257
(0.845) (0.416) (1.052) (0.431)

Day FEs Yes Yes Yes Yes
Route FEs Yes Yes
Origin FEs Yes Yes
Destination FEs Yes Yes

Note: This table replicates results from Table 8 but uses reweighed smartphone trips data. ∗p<0.1; ∗∗p<0.05;
∗∗∗p<0.01.
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A.7 Theoretical Proofs

Proposition 1.
Fully differentiate the first order conditions wrt bout:

ηw ≡ dbw
dbout

=
−c′′0 ·

(
c′′b − (c′0 + c′w)

π′′(b∗w)
π(b∗w)′

)
(
c′′b + c′′0 − (c′0 + c′b)

π′′(b∗b )

π′(b∗b )

)(
c′′w + c′′0 − (c′0 + c′w)

π′′(b∗w)
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)
− c′′20

(25)

ηb ≡
dbb
dbout

=
−c′′0 ·

(
c′′w − (c′0 + c′b)

π′′(b∗b )

π′(b∗b )

)
(
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(27)

Using Assumption 1., we get:

ηw ≡ dbw
dbout

≈ −c′′0c
′′
b

(c′′0 + c′′b )(c
′′
0 + c′′w)− c′′20

(28)
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′′
w

(c′′0 + c′′b )(c
′′
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Then
ηw
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≈ c′′b
c′′w

Proposition 2.
Fully differentiate first order conditions wrt λw and λb

ϵw ≡ dbw
dλw

· λw
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(31)
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Using Assumption 1., we get:

ϵw ≈ (c′0 + c′w)(c
′′
b + c′′0)

[(c′′0 + c′′w)(c
′′
0 + c′′b )− c′′20 ] bw
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w
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